HDU 5646 DZY Loves Partition(BC)

本文介绍了一个数学问题,探讨如何将一个正整数n拆分成k个不同的正整数之和,并求出这k个数相乘的最大值。文章提供了具体的解题思路及C语言实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

DZY Loves Partition

Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)
Total Submission(s): 1414    Accepted Submission(s): 536


Problem Description
DZY loves partitioning numbers. He wants to know whether it is possible to partition  n  into the sum of exactly  k  distinct positive integers.

After some thinking he finds this problem is Too Simple. So he decides to maximize the product of these  k  numbers. Can you help him?

The answer may be large. Please output it modulo  109+7 .
 

Input
First line contains  t  denoting the number of testcases.

t  testcases follow. Each testcase contains two positive integers  n,k  in a line.

( 1t50,2n,k109 )
 

Output
For each testcase, if such partition does not exist, please output  1 . Otherwise output the maximum product mudulo  109+7 .
 

Sample Input
      
4 3 4 3 2 9 3 666666 2
 

Sample Output
      
-1 2 24 110888111
Hint
In 1st testcase, there is no valid partition. In 2nd testcase, the partition is $3=1+2$. Answer is $1\times 2 = 2$. In 3rd testcase, the partition is $9=2+3+4$. Answer is $2\times 3 \times 4 = 24$. Note that $9=3+3+3$ is not a valid partition, because it has repetition. In 4th testcase, the partition is $666666=333332+333334$. Answer is $333332\times 333334= 111110888888$. Remember to output it mudulo $10^9 + 7$, which is $110888111$.
 

Source


分析:

一个正整数n拆分成k个正整数相加,求出k个正整数相乘的最大值。

要取得k个正整数相乘有最大值,即n去和n/k最相近的k个满足要求的数。

先将n/k个整数分配,再分配n%k剩下的数字,即将这些数字补到最大的几个数字上,每个数字加1,如果补到小的数字上会出现与后面重复的情况。

代码如下:

#include <stdio.h>
typedef long long LL;
int a[100005];
int main()
{
	int T;
	int n,k,i,j;
	scanf("%d",&T);
	while(T--)
	{
		scanf("%d %d",&n,&k);
		LL tmp = (LL)k*(k+1)/2;
		if(tmp>n)
		{//如何最小的k个和大于n,则输出-1 
			printf("-1\n");
			continue;
		}
		//将最小的1~k分配到这k个数上 
		for(i=1;i<=k;i++) 
			a[i]=i;
		n-=tmp;		//减去分配的数字
		for(i=1;i<=k;i++)
			a[i]+=n/k;
		n=n%k;
		//来实现将n%k的数补到后面数的几个数上,每个数加一 
		for(i=k;n--;i--)
			a[i]++;	
		LL ans=1; 
		for(i=1;i<=k;i++)
			ans=(ans*a[i])%1000000007;
		printf("%I64d\n",ans);
	}
	
	return 0;
} 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值