知识增强图(KAG)在LLM检索中的应用

在人工智能领域蓬勃发展的当下,生成式人工智能技术不断取得新的突破,其中基于大语言模型(LLM)的检索技术更是成为众多应用场景的核心。检索增强生成(RAG)和 GraphRAG 作为该领域的重要探索成果(2024 年 RAG 的崛起和演变:一年回顾综述(1.25万字+46参考文献+18张图)),曾为连接外部文档与大语言模型进行问答任务提供了有力支持,但它们也存在着不可忽视的局限性。在此背景下,知识增强生成(KAG)应运而生,它不仅有效克服了前两者的不足,更在诸多方面实现了显著提升,为基于 LLM 的检索技术带来了崭新的发展方向。

一、RAG 与 GraphRAG 的发展脉络与局限剖析

(一)RAG:连接外部知识的先驱

RAG (面向企业RAG(Retrieval Augmented Generat

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值