利用LLM Graph Transformer实现知识图谱的高效构建

在信息爆炸的时代,如何有效地从海量文本中提取结构化信息并构建知识图谱(Graphusion:基于零样本LLM的知识图谱构建框架),成为了一个备受关注的问题。知识图谱是一种强大的工具,它以图的形式表示实体及其之间的关系,能够帮助我们更好地理解和利用数据。近年来,随着大型语言模型(LLM)的飞速发展,LLM Graph Transformer应运而生,它利用LLM的能力,实现了从文本中自动提取实体和关系并构建知识图谱(GraphRAG原理深入剖析-知识图谱构建)的功能。今天我们一起了解一下LLM Graph Transformer。

图片

一、LLM Graph Transformer介绍

LLM Graph Transformer是一种利用大型语言模型(LLM)构建知识图谱的工具。它通过提取文本中的实体和关系,将这些信息以图的形式表示出来,从而形成一个知识图谱。LLM Graph Transformer提供了两种主要的应用模式:工具基于模式和提示基于模式。这两种模式在不同的场景下各有优势,可以根据具体需求进行选择。

  1. 工具基于模式(默认模式):

    • 工作原理:当LLM支持结构化输出或函数调用时,工具基于模式会利用LLM的内置功能来提取实体和关系。通过定义工具规范,可以确保实体和关系以结构化、预定义的方式被提取出来。

    • 优势:工具基于模式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

大模型之路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值