Bounding boxes augmentation for object detection

本文介绍了PascalVOC、Albumentations、COCO和YOLO等不同标注格式的boundingboxes,展示了如何在图像处理中使用这些格式,并详细讲解了boundingbox的坐标表示和augmentation过程中对大小、可见度和类标签的处理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Different annotations formats

Bounding boxes are rectangles that mark objects on an image. There are multiple formats of bounding boxes annotations. Each format uses its specific representation of bouning boxes coordinates 每种格式都使用其特定的边界框坐标表示。. Albumentations supports four formats: pascal_vocalbumentationscoco, and yolo .

Let's take a look at each of those formats and how they represent coordinates 坐标 of bounding boxes.

As an example, we will use an image from the dataset named Common Objects in Context. It contains one bounding box that marks a cat. The image width is 640 pixels, and its height is 480 pixels. The width of the bounding box is 322 pixels, and its height is 117 pixels.

 An example image with a bounding box from the COCO dataset

pascal_voc

pascal_voc is a format used by the Pascal VOC dataset. Coordinates of a bounding box are encoded with four values in pixels: [x_min, y_min, x_max, y_max]. x_min and y_min are coordinates of the top-left corner of the bounding box. x_max and y_max are coordinates of bottom-right corner of the bounding box.

Coordinates of the example bounding box in this format are [98, 345, 420, 462].

albumentations

albumentations is similar to pascal_voc, because it also uses four values [x_min, y_min, x_max, y_max] to represent a bounding box. But unlike pascal_vocalbumentations uses normalized values. To normalize values, we divide coordinates in pixels for the x- and y-axis by the width and the height of the image.

Coordinates of the example bounding box in this format are [98 / 640, 345 / 480, 420 / 640, 462 / 480] which are [0.153125, 0.71875, 0.65625, 0.9625].

Albumentations uses this format internally 内部 to work with bounding boxes and augment them.

coco

coco is a format used by the Common Objects in Context COCOCOCO dataset.

In coco, a bounding box is defined by four values in pixels [x_min, y_min, width, height]. They are coordinates of the top-left corner along with the width and height of the bounding box.

Coordinates of the example bounding box in this format are [98, 345, 322, 117].

yolo

In yolo, a bounding box is represented by four values [x_center, y_center, width, height]x_center and y_center are the normalized coordinates of the center of the bounding box. To make coordinates normalized, we take pixel values of x and y, which marks the center of the bounding box on the x- and y-axis. Then we divide the value of x by the width of the image and value of y by the height of the image. width and height represent the width and the height of the bounding box. They are normalized as well.

Coordinates of the example bounding box in this format are [((420 + 98) / 2) / 640, ((462 + 345) / 2) / 480, 322 / 640, 117 / 480] which are [0.4046875, 0.840625, 0.503125, 0.24375].

Bounding boxes augmentation

Just like with images and masks augmentation, the process of augmenting bounding boxes consists of 4 steps.

  1. You import the required libraries.
  2. You define an augmentation pipeline.
  3. You read images and bounding boxes from the disk.
  4. You pass an image and bounding boxes to the augmentation pipeline and receive augmented images and boxes.

Note

Some transforms in Albumentation don't support bounding boxes. If you try to use them you will get an exception. Please refer to this article to check whether a transform can augment bounding boxes.

Step 1. Import the required libraries.

import albumentations as A
import cv2

Step 2. Define an augmentation pipeline.

Here an example of a minimal declaration of an augmentation pipeline that works with bounding boxes.

transform = A.Compose([
    A.RandomCrop(width=450, height=450),
    A.HorizontalFlip(p=0.5),
    A.RandomBrightnessContrast(p=0.2),
], bbox_params=A.BboxParams(format='coco'))

Note that unlike image and masks augmentation, Compose now has an additional parameter bbox_params. You need to pass an instance of A.BboxParams to that argument. A.BboxParams specifies settings for working with bounding boxes. format sets the format for bounding boxes coordinates.

It can either be pascal_vocalbumentationscoco or yolo. This value is required because Albumentation needs to know the coordinates' source format for bounding boxes to apply augmentations correctly.

Besides formatA.BboxParams supports a few more settings.

Here is an example of Compose that shows all available settings with A.BboxParams:

transform = A.Compose([
    A.RandomCrop(width=450, height=450),
    A.HorizontalFlip(p=0.5),
    A.RandomBrightnessContrast(p=0.2),
], bbox_params=A.BboxParams(format='coco', min_area=1024, min_visibility=0.1, label_fields=['class_labels']))

min_area and min_visibility

min_area and min_visibility parameters control what Albumentations should do to the augmented bounding boxes if their size has changed after augmentation. The size of bounding boxes could change if you apply spatial augmentations 空间增强 , for example, when you crop 裁剪 a part of an image or when you resize an image.

min_area is a value in pixels 是以像素为单位的值. If the area of a bounding box after augmentation becomes smaller than min_area, Albumentations will drop that box. So the returned list of augmented bounding boxes won't contain that bounding box.

min_visibility is a value between 0 and 1. If the ratio of the bounding box area after augmentation to the area of the bounding box before augmentation becomes smaller than min_visibility, Albumentations will drop that box. So if the augmentation process cuts the most of the bounding box, that box won't be present in the returned list of the augmented bounding boxes.

Here is an example image that contains two bounding boxes. Bounding boxes coordinates are declared using the coco format.

 An example image with two bounding boxes

First, we apply the CenterCrop augmentation without declaring parameters min_area and min_visibility. The augmented image contains two bounding boxes.

 An example image with two bounding boxes after applying augmentation

Next, we apply the same CenterCrop augmentation, but now we also use the min_area parameter. Now, the augmented image contains only one bounding box, because the other bounding box's area after augmentation became smaller than min_area, so Albumentations dropped that bounding box.

 An example image with one bounding box after applying augmentation with 'min_area'

Finally, we apply the CenterCrop augmentation with the min_visibility. After that augmentation, the resulting image doesn't contain any bounding box, because visibility of all bounding boxes after augmentation are below threshold set by min_visibility.

An example image with zero bounding boxes after applying augmentation with 'min_visibility' 

Class labels for bounding boxes

Besides coordinates, each bounding box should have an associated class label that tells which object lies inside the bounding box. There are two ways to pass a label for a bounding box.

Let's say you have an example image with three objects: dogcat, and sports ball. Bounding boxes coordinates in the coco format for those objects are [23, 74, 295, 388][377, 294, 252, 161], and [333, 421, 49, 49].

An example image with 3 bounding boxes from the COCO dataset

1. You can pass labels along with bounding boxes coordinates by adding them as additional values to the list of coordinates.

For the image above, bounding boxes with class labels will become [23, 74, 295, 388, 'dog'][377, 294, 252, 161, 'cat'], and [333, 421, 49, 49, 'sports ball'].

Class labels could be of any type: integer, string, or any other Python data type. For example, integer values as class labels will look the following: [23, 74, 295, 388, 18][377, 294, 252, 161, 17], and [333, 421, 49, 49, 37].

 Also, you can use multiple class values for each bounding box, for example [23, 74, 295, 388, 'dog', 'animal'][377, 294, 252, 161, 'cat', 'animal'], and [333, 421, 49, 49, 'sports ball', 'item'].

2.You can pass labels for bounding boxes as a separate list (the preferred way).

 For example, if you have three bounding boxes like [23, 74, 295, 388][377, 294, 252, 161], and [333, 421, 49, 49] you can create a separate list with values like ['cat', 'dog', 'sports ball'], or [18, 17, 37] that contains class labels for those bounding boxes. Next, you pass that list with class labels as a separate argument to the transform function. Albumentations needs to know the names of all those lists with class labels to join them with augmented bounding boxes correctly. Then, if a bounding box is dropped after augmentation because it is no longer visible, Albumentations will drop the class label for that box as well. Use label_fields parameter to set names for all arguments in transform that will contain label descriptions for bounding boxes (more on that in Step 4).

Step 3. Read images and bounding boxes from the disk.

Read an image from the disk.

image = cv2.imread("/path/to/image.jpg")
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)

Bounding boxes can be stored on the disk in different serialization formats: JSON, XML, YAML, CSV, etc. So the code to read bounding boxes depends on the actual format of data on the disk.

After you read the data from the disk, you need to prepare bounding boxes for Albumentations.

Albumentations expects that bounding boxes will be represented 表示 as a list of lists. Each list contains information about a single bounding box. A bounding box definition should have at list four elements that represent the coordinates of that bounding box. The actual meaning of those four values depends on the format of bounding boxes (either pascal_vocalbumentationscoco, or yolo). Besides four coordinates, each definition of a bounding box may contain one or more extra values. You can use those extra values to store additional information about the bounding box, such as a class label of the object inside the box. During augmentation, Albumentations will not process those extra values. The library will return them as is along with the updated coordinates of the augmented bounding box 库将按原样返回它们以及增强边界框的更新坐标.

Step 4. Pass an image and bounding boxes to the augmentation pipeline and receive augmented images and boxes.

As discussed in Step 2, there are two ways of passing class labels along with bounding boxes coordinates:

1. Pass class labels along with coordinates.

So, if you have coordinates of three bounding boxes that look like this:

bboxes = [
    [23, 74, 295, 388],
    [377, 294, 252, 161],
    [333, 421, 49, 49],
]

you can add a class label for each bounding box as an additional element of the list along with four coordinates. So now a list with bounding boxes and their coordinates will look the following:

bboxes = [
    [23, 74, 295, 388, 'dog'],
    [377, 294, 252, 161, 'cat'],
    [333, 421, 49, 49, 'sports ball'],
]

or with multiple labels per each bounding box:

bboxes = [
    [23, 74, 295, 388, 'dog', 'animal'],
    [377, 294, 252, 161, 'cat', 'animal'],
    [333, 421, 49, 49, 'sports ball', 'item'],
]

You can use any data type for declaring class labels. It can be string, integer, or any other Python data type.

Next, you pass an image and bounding boxes for it to the transform function and receive the augmented image and bounding boxes.

transformed = transform(image=image, bboxes=bboxes)
transformed_image = transformed['image']
transformed_bboxes = transformed['bboxes']

 Example input and output data for bounding boxes augmentation

2. Pass class labels in a separate argument to transform (the preferred way).

 Let's say you have coordinates of three bounding boxes

bboxes = [
    [23, 74, 295, 388],
    [377, 294, 252, 161],
    [333, 421, 49, 49],
]

You can create a separate list that contains class labels for those bounding boxes:

class_labels = ['cat', 'dog', 'parrot']

Then you pass both bounding boxes and class labels to transform. Note that to pass class labels, you need to use the name of the argument that you declared in label_fields when creating an instance of Compose in step 2. In our case, we set the name of the argument to class_labels.

transformed = transform(image=image, bboxes=bboxes, class_labels=class_labels)
transformed_image = transformed['image']
transformed_bboxes = transformed['bboxes']
transformed_class_labels = transformed['class_labels']

Example input and output data for bounding boxes augmentation with a separate argument for class labels 

Note that label_fields expects a list, so you can set multiple fields that contain labels for your bounding boxes. So if you declare Compose like

transform = A.Compose([
    A.RandomCrop(width=450, height=450),
    A.HorizontalFlip(p=0.5),
    A.RandomBrightnessContrast(p=0.2),
], bbox_params=A.BboxParams(format='coco', label_fields=['class_labels', 'class_categories'])))

you can use those multiple arguments to pass info about class labels, like

class_labels = ['cat', 'dog', 'parrot']
class_categories = ['animal', 'animal', 'item']

transformed = transform(image=image, bboxes=bboxes, class_labels=class_labels, class_categories=class_categories)
transformed_image = transformed['image']
transformed_bboxes = transformed['bboxes']
transformed_class_labels = transformed['class_labels']
transformed_class_categories = transformed['class_categories']

# Ultralytics YOLO 🚀, AGPL-3.0 license # Default training settings and hyperparameters for medium-augmentation COCO training task: detect # (str) YOLO task, i.e. detect, segment, classify, pose mode: train # (str) YOLO mode, i.e. train, val, predict, export, track, benchmark # Train settings ------------------------------------------------------------------------------------------------------- model: # (str, optional) path to model file, i.e. yolov8n.pt, yolov8n.yaml data: # (str, optional) path to data file, i.e. coco128.yaml epochs: 200 # (int) number of epochs to train for patience: 300 # (int) epochs to wait for no observable improvement for early stopping of training batch: 2 # (int) number of images per batch (-1 for AutoBatch) imgsz: 640 # (int | list) input images size as int for train and val modes, or list[w,h] for predict and export modes save: True # (bool) save train checkpoints and predict results save_period: -1 # (int) Save checkpoint every x epochs (disabled if < 1) cache: True # (bool) True/ram, disk or False. Use cache for data loading device: # (int | str | list, optional) device to run on, i.e. cuda device=0 or device=0,1,2,3 or device=cpu workers: 0 # (int) number of worker threads for data loading (per RANK if DDP) project: # (str, optional) project name name: # (str, optional) experiment name, results saved to 'project/name' directory exist_ok: False # (bool) whether to overwrite existing experiment pretrained: True # (bool | str) whether to use a pretrained model (bool) or a model to load weights from (str) optimizer: auto # (str) optimizer to use, choices=[SGD, Adam, Adamax, AdamW, NAdam, RAdam, RMSProp, auto] verbose: True # (bool) whether to print verbose output seed: 0 # (int) random seed for reproducibility deterministic: True # (bool) whether to enable deterministic mode single_cls: False # (bool) train multi-class data as single-class rect: False # (bool) rectangular training if mode='train' or rectangular validation if mode='val' cos_lr: False # (bool) use cosine learning rate scheduler close_mosaic: 10 # (int) disable mosaic augmentation for final epochs (0 to disable) resume: False # (bool) resume training from last checkpoint amp: True # (bool) Automatic Mixed Precision (AMP) training, choices=[True, False], True runs AMP check fraction: 1.0 # (float) dataset fraction to train on (default is 1.0, all images in train set) profile: False # (bool) profile ONNX and TensorRT speeds during training for loggers freeze: None # (int | list, optional) freeze first n layers, or freeze list of layer indices during training # Segmentation overlap_mask: True # (bool) masks should overlap during training (segment train only) mask_ratio: 4 # (int) mask downsample ratio (segment train only) # Classification dropout: 0.0 # (float) use dropout regularization (classify train only) # Val/Test settings ---------------------------------------------------------------------------------------------------- val: True # (bool) validate/test during training split: val # (str) dataset split to use for validation, i.e. 'val', 'test' or 'train' save_json: False # (bool) save results to JSON file save_hybrid: False # (bool) save hybrid version of labels (labels + additional predictions) conf: # (float, optional) object confidence threshold for detection (default 0.25 predict, 0.001 val) iou: 0.7 # (float) intersection over union (IoU) threshold for NMS max_det: 300 # (int) maximum number of detections per image half: False # (bool) use half precision (FP16) dnn: False # (bool) use OpenCV DNN for ONNX inference plots: True # (bool) save plots during train/val # Prediction settings -------------------------------------------------------------------------------------------------- source: # (str, optional) source directory for images or videos show: False # (bool) show results if possible save_txt: False # (bool) save results as .txt file save_conf: False # (bool) save results with confidence scores save_crop: False # (bool) save cropped images with results show_labels: True # (bool) show object labels in plots show_conf: True # (bool) show object confidence scores in plots vid_stride: 1 # (int) video frame-rate stride stream_buffer: False # (bool) buffer all streaming frames (True) or return the most recent frame (False) line_width: # (int, optional) line width of the bounding boxes, auto if missing visualize: False # (bool) visualize model features augment: False # (bool) apply image augmentation to prediction sources agnostic_nms: False # (bool) class-agnostic NMS classes: # (int | list[int], optional) filter results by class, i.e. classes=0, or classes=[0,2,3] retina_masks: False # (bool) use high-resolution segmentation masks boxes: True # (bool) Show boxes in segmentation predictions # Export settings ------------------------------------------------------------------------------------------------------ format: torchscript # (str) format to export to, choices at https://docs.ultralytics.com/modes/export/#export-formats keras: False # (bool) use Kera=s optimize: False # (bool) TorchScript: optimize for mobile int8: False # (bool) CoreML/TF INT8 quantization dynamic: False # (bool) ONNX/TF/TensorRT: dynamic axes simplify: False # (bool) ONNX: simplify model opset: # (int, optional) ONNX: opset version workspace: 4 # (int) TensorRT: workspace size (GB) nms: False # (bool) CoreML: add NMS # Hyperparameters ------------------------------------------------------------------------------------------------------ lr0: 0.01 # (float) initial learning rate (i.e. SGD=1E-2, Adam=1E-3) lrf: 0.01 # (float) final learning rate (lr0 * lrf) momentum: 0.937 # (float) SGD momentum/Adam beta1 weight_decay: 0.0005 # (float) optimizer weight decay 5e-4 warmup_epochs: 3.0 # (float) warmup epochs (fractions ok) warmup_momentum: 0.8 # (float) warmup initial momentum warmup_bias_lr: 0.1 # (float) warmup initial bias lr box: 7.5 # (float) box loss gain cls: 0.5 # (float) cls loss gain (scale with pixels) dfl: 1.5 # (float) dfl loss gain pose: 12.0 # (float) pose loss gain kobj: 1.0 # (float) keypoint obj loss gain label_smoothing: 0.0 # (float) label smoothing (fraction) nbs: 64 # (int) nominal batch size hsv_h: 0.015 # (float) image HSV-Hue augmentation (fraction) hsv_s: 0.7 # (float) image HSV-Saturation augmentation (fraction) hsv_v: 0.4 # (float) image HSV-Value augmentation (fraction) degrees: 0.0 # (float) image rotation (+/- deg) translate: 0.1 # (float) image translation (+/- fraction) scale: 0.5 # (float) image scale (+/- gain) shear: 0.0 # (float) image shear (+/- deg) perspective: 0.0 # (float) image perspective (+/- fraction), range 0-0.001 flipud: 0.0 # (float) image flip up-down (probability) fliplr: 0.5 # (float) image flip left-right (probability) mosaic: 1.0 # (float) image mosaic (probability) mixup: 0.0 # (float) image mixup (probability) copy_paste: 0.0 # (float) segment copy-paste (probability) # Custom config.yaml --------------------------------------------------------------------------------------------------- cfg: # (str, optional) for overriding defaults.yaml # Tracker settings ------------------------------------------------------------------------------------------------------ tracker: botsort.yaml # (str) tracker type, choices=[botsort.yaml, bytetrack.yaml] 这段代码什么意思
05-12
<think>好的,我现在需要帮用户理解Ultralytics YOLO配置文件的参数和功能。用户之前已经询问过YOLOv8的损失函数,现在想进一步了解配置文件中的各个参数,包括训练、验证、预测和导出设置,以及超参数的意义。用户还提到了参考站内的引用,其中引用了官方文档和参数详解的内容,但用户指出这些引用仅供参考,并不是真正的需求,所以需要更多结合之前的问题和回答来分析。 首先,我需要回忆YOLO的配置文件结构。通常,YAML文件用于配置模型训练和验证的各种参数。用户提到的配置文件可能包括模型结构、数据路径、训练参数、优化器设置、数据增强、验证设置、预测选项、导出配置等部分。我需要逐一解释这些部分的关键参数。 接下来,用户之前的问题涉及到损失函数的调整,因此在解释配置文件时,可能需要关联到损失函数相关的参数,比如损失权重(cls、box、dfl)以及对应的超参数调整。此外,用户可能对如何通过修改配置文件来优化模型性能感兴趣,例如调整学习率、优化器类型、数据增强强度等。 需要注意的是,用户引用了官方文档中的安装命令和参数说明,但用户的实际需求是理解配置文件的具体参数含义,因此需要详细解释每个部分的作用,而不仅仅是安装步骤。比如,训练部分中的epochs、batch、imgsz、device等参数,以及验证中的save_json、conf等参数的意义。 此外,用户可能希望了解如何根据不同的任务需求调整这些参数,例如在训练时如何选择优化器,如何设置学习率调度,或者在验证时如何保存结果。同时,超参数部分如lr0、lrf、momentum、weight_decay等的作用也需要详细说明,以帮助用户进行调优。 最后,用户可能希望了解导出设置中的格式选项,比如如何将模型导出为ONNX或TensorRT格式,以及这些格式的适用场景。需要确保解释清晰,帮助用户根据实际应用选择合适的导出格式。 总结来说,我需要将配置文件分为几个主要部分,分别详细解释每个参数的功能和推荐值,同时结合用户之前关于损失函数的问题,指出哪些参数可能影响模型训练的效果和性能。此外,提供实际修改示例和注意事项,帮助用户避免常见错误,确保配置调整的有效性。</think>以下是对Ultralytics YOLO配置文件(`*.yaml`)参数的系统解析,结合代码实现逻辑与最佳实践: --- ### 一、核心配置模块 配置文件采用**模块化层级设计**,主要包含以下6大功能域: ```yaml # ultralytics/cfg/default.yaml 示例 task: detect # 任务类型 (detect/segment/classify/pose) mode: train # 运行模式 (train/val/predict/export) model: yolov8n.yaml# 模型架构配置文件 data: coco128.yaml # 数据集配置文件 ... ``` --- ### 二、训练参数详解 #### 1. 基础设置 ```yaml train: epochs: 100 # 训练总轮次 batch: 16 # 批次大小 (根据显存调整) imgsz: 640 # 输入图像尺寸 save: True # 保存检查点 device: 0 # 设备选择 (0=GPU0, 'cpu'=CPU) workers: 8 # 数据加载线程数 pretrained: True # 是否加载预训练权重[^1] ``` #### 2. 优化器配置 ```yaml optimizer: name: auto # 自动选择(SGD/Adam/AdamW) lr0: 0.01 # 初始学习率 lrf: 0.01 # 最终学习率(lr0*lrf) momentum: 0.937 # SGD动量参数 weight_decay: 0.0005 # L2正则化系数 ``` #### 3. 数据增强 ```yaml augment: hsv_h: 0.015 # 色调增强幅度 hsv_s: 0.7 # 饱和度增强幅度 hsv_v: 0.4 # 明度增强幅度 degrees: 0.0 # 旋转角度范围 translate: 0.1 # 平移比例 scale: 0.5 # 缩放比例 shear: 0.0 # 剪切幅度 perspective: 0.0 # 透视变换系数 flipud: 0.0 # 上下翻转概率 fliplr: 0.5 # 左右翻转概率 ``` --- ### 三、验证/预测配置 #### 1. 验证参数 ```yaml val: split: val # 数据集划分方式(val/test/train) save_json: False # 是否保存JSON格式结果 conf: 0.001 # 置信度阈值 iou: 0.6 # NMS的IoU阈值 plots: True # 生成可视化图表[^2] ``` #### 2. 预测参数 ```yaml predict: source: # 输入源 (文件/目录/URL等) show: False # 实时显示预测结果 save_txt: False # 保存标签文本 save_conf: False # 保存置信度分数 save_crop: False # 保存裁剪的检测目标 ``` --- ### 四、模型导出设置 ```yaml export: format: onnx # 导出格式 (onnx/torchscript/coreml) half: False # FP16量化 dynamic: False # ONNX动态轴 simplify: True # ONNX简化优化 opset: 12 # ONNX算子版本 workspace: 4 # TensorRT工作空间大小(GB) ``` --- ### 五、关键超参数解析 | 参数 | 作用域 | 推荐范围 | 影响维度 | |-------|--------|----------|----------| | `box` | 损失权重 | 5.0-7.5 | 定位精度 | | `cls` | 分类损失权重 | 0.3-0.7 | 分类准确率 | | `dfl` | 分布损失权重 | 1.0-2.0 | 边界框平滑度 | | `anchors` | 锚点数量 | 3-5 | 小目标检测能力 | | `warmup_epochs` | 热身阶段 | 1-3 | 训练稳定性 | --- ### 六、配置文件修改实践 1. **多GPU训练配置** ```yaml device: 0,1,2,3 # 使用4块GPU batch: 64 # 总batch=GPU数*单卡batch ``` 2. **学习率调度策略** ```yaml lr0: 0.01 lrf: 0.2 # 余弦退火调度:lr0 -> lr0*lrf ``` 3. **自定义数据增强** ```yaml augment: mosaic: 1.0 # 马赛克增强概率 mixup: 0.2 # MixUp混合增强概率 copy_paste: 0.5 # 目标复制粘贴增强 ``` --- ### 七、调试建议 1. 使用`python train.py --cfg default.yaml`验证配置有效性 2. 监控显存占用与`batch`大小的关系:`nvidia-smi -l 1` 3. 可视化数据增强效果: ```python from ultralytics import YOLO model = YOLO('yolov8n.yaml') model.train(data='coco128.yaml', augment=True) ``` --- ### 相关问题 1. 如何根据硬件配置调整batch size和workers数量? 2. YOLOv8支持哪些类型的自定义数据增强? 3. 导出ONNX模型时遇到算子不支持问题如何解决?
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值