pandas用法总结
一、生成数据表
1、首先导入pandas库,一般都会用到numpy库,所以我们先导入备用:
import numpy as np
import pandas as pd
2、导入CSV或者xlsx文件:
df = pd.DataFrame(pd.read_csv('name.csv',header=1))
df = pd.DataFrame(pd.read_excel('name.xlsx'))
或者
import pandas as pd
from collections import namedtuple
Item = namedtuple('Item', 'reply pv')
items = []
with codecs.open('reply.pv.07', 'r', 'utf-8') as f:
for line in f:
line_split = line.strip().split('\t')
items.append(Item(line_split[0].strip(), line_split[1].strip()))
df = pd.DataFrame.from_records(items, columns=['reply', 'pv'])
3、用pandas创建数据表:
df = pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006],
"date":pd.date_range('20130102', periods=6),
"city":['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
"age":[23,44,54,32,34,32],
"category":['100-A','100-B','110-A','110-C','210-A','130-F'],
"price":[1200,np.nan,2133,5433,np.nan,4432]},
columns =['id','date','city','category','age','price'])
4、创建过程合并
import numpy as np
import pandas as pd
df = pd.DataFrame({"id": [1001, 1002, 1003, 1004, 1005, 1006],
"date": pd.date_range('20130102', periods=6),
"city": ['Beijing ', 'SH', ' guangzhou ', 'Shenzhen', 'shanghai', 'BEIJING '],
"age": [23, 44, 54, 32, 34, 32],
"category": ['100-A', '100-B', '110-A', '110-C', '210-A', '130-F'],
"price": [1200, np.nan, 2133, 5433, np.nan, 4432]},
columns=['id', 'date', 'city', 'category', 'age', 'price'])
对比以下代码
import pandas
data = {
"Day": [1, 2, 3, 4, 5, 6, 7, 8, 9, 10],
"Visitors": [18, 26, 18, 18, 9, 9, 20, 30, 16, 24],
"Bounce_Rate": [77.27, 74.07, 73.68, 65, 90, 70, 72, 62.16, 81.25, 72],
}
df = pandas.DataFrame(data)
print(df)
二、数据表信息查看
1、维度查看:
print(df.shape)# (6, 6)
2、数据表基本信息(维度、列名称、数据格式、所占空间等):
print(df.info())
'''
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 6 entries, 0 to 5
Data columns (total 6 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 id 6 non-null int64
1 date 6 non-null datetime64[ns]
2 city 6 non-null object
3 category 6 non-null object
4 age 6 non-null int64
5 price 4 non-null float64
dtypes: datetime64[ns](1), float64(1), int64(2), object(2)
memory usage: 416.0+ bytes
None
'''
3、每一列数据的格式:
print(df.dtypes) # dtype: object
4、某一列格式:
df['B'].dtype
5、空值:
df.isnull()
6、查看某一列空值
df['B'].isnull()
7、查看某一列的唯一值:
df['B'].unique()
8、查看数据表的值:
print(df.values )
'''
[[1001 Timestamp('2013-01-02 00:00:00') 'Beijing ' '100-A' 23 1200.0]
[1002 Timestamp('2013-01-03 00:00:00') 'SH' '100-B' 44 nan]
[1003 Timestamp('2013-01-04 00:00:00') ' guangzhou ' '110-A' 54 2133.0]
[1004 Timestamp('2013-01-05 00:00:00') 'Shenzhen' '110-C' 32 5433.0]
[1005 Timestamp('2013-01-06 00:00:00') 'shanghai' '210-A' 34 nan]
[1006 Timestamp('2013-01-07 00:00:00') 'BEIJING ' '130-F' 32 4432.0]]
'''
9、查看列名称:
df.columns
10、查看前5行数据、后5行数据:
df.head() #默认前5行数据
df.tail() #默认后5行数据
三、数据表清洗
1、用数字0填充空值:
df.fillna(value=0)
2、使用列prince的均值对NA进行填充:
df['prince'].fillna(df['prince'].mean())
3、清楚city字段的字符空格:
df['city']=df['city'].map(str.strip)
4、大小写转换:
df['city']=df['city'].str.lower()
5、更改数据格式:
df['price'].astype('int')
6、更改列名称:
df.rename(columns={'category': 'category-size'})
7、删除后出现的重复值:
df['city'].drop_duplicates()
8 、删除先出现的重复值:
df['city'].drop_duplicates(keep='last')
9、数据替换:
df['city'].replace('sh', 'shanghai')
四、数据预处理
df1=pd.DataFrame({"id":[1001,1002,1003,1004,1005,1006,1007,1008],
"gender":['male','female','male','female','male','female','male','female'],
"pay":['Y','N','Y','Y','N','Y','N','Y',],
"m-point":[10,12,20,40,40,40,30,20]})
1、数据表合并
1.1 merge
df_inner=pd.merge(df,df1,how='inner') # 匹配合并,交集
df_left=pd.merge(df,df1,how='left') #
df_right=pd.merge(df,df1,how='right')
df_outer=pd.merge(df,df1,how='outer') #并集
1.2 append
result = df1.append(df2)
1.3 join
result = left.join(right, on='key')
1.4 concat
pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False,
keys=None, levels=None, names=None, verify_integrity=False,
copy=True)
链接
https://blog.youkuaiyun.com/yiyele/article/details/80605909?ops_request_misc=%257B%2522request%255Fid%2522%253A%2522164580274016780261999347%2522%252C%2522scm%2522%253A%252220140713.130102334…%2522%257D&request_id=164580274016780261999347&biz_id=0&utm_medium=distribute.pc_search_result.none-task-blog-2alltop_positive~default-1-80605909.pc_search_result_cache&utm_term=pandas&spm=1018.2226.3001.4187