问题背景
最近在学习机器学习实战这本书,这本书的讲解生动切合实际,我认为是一本非常不错的书。但年头毕竟长了,部分代码无法运行也是可以理解的,所以我通过调试将其修改为能跑出结果的代码
具体问题
- RSS源地址无法访问
- 部分语法为python2语法
- 代码逻辑有bug
- 只有对于英文的内容解析而没有中文的(我调用了jieba库来解决这个问题)
- 其它暂不列举
代码
bayes.py
'''
Created on Oct 19, 2010
@author: Peter
'''
from numpy import *
def loadDataSet():
postingList=[['my', 'dog', 'has', 'flea', 'problems', 'help', 'please'],
['maybe', 'not', 'take', 'him', 'to', 'dog', 'park', 'stupid'],
['my', 'dalmation', 'is', 'so', 'cute', 'I', 'love', 'him'],
['stop', 'posting', 'stupid', 'worthless', 'garbage'],
['mr', 'licks', 'ate', 'my', 'steak', 'how', 'to', 'stop', 'him'],
['quit', 'buying', 'worthless', 'dog', 'food', 'stupid']]
classVec = [0,1,0,1,0,1] #1 is abusive, 0 not
return postingList,classVec
def createVocabList(dataSet):
vocabSet = set([]) #create empty set
for document in dataSet:
vocabSet = vocabSet | set(document) #union of the two sets
return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] = 1
return returnVec
def trainNB0(trainMatrix,trainCategory):
numTrainDocs = len(trainMatrix)
numWords = len(trainMatrix[0])
pAbusive = sum(trainCategory)/float(numTrainDocs)
p0Num = ones(numWords); p1Num = ones(numWords) #change to ones()
p0Denom = 2.0; p1Denom = 2.0 #change to 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
p1Num += trainMatrix[i]
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
p1Vect = log(p1Num/p1Denom) #change to log()
p0Vect = log(p0Num/p0Denom) #change to log()
return p0Vect,p1Vect,pAbusive
def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
p1 = sum(vec2Classify * p1Vec) + log(pClass1) #element-wise mult
p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
if p1 > p0:
return 1
else:
return 0
def bagOfWords2VecMN(vocabList, inputSet):
returnVec = [0]*len(vocabList)
for word in inputSet:
if word in vocabList:
returnVec[vocabList.index(word)] += 1
return returnVec
def testingNB():
listOPosts,listClasses = loadDataSet()
myVocabList = createVocabList(listOPosts)
trainMat=[]
for postinDoc in listOPosts:
trainMat.append(setOfWords2Vec(myVocabList, postinDoc))
p0V,p1V,pAb = trainNB0(array(trainMat),array(listClasses))
testEntry = ['love', 'my', 'dalmation']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
testEntry = ['stupid', 'garbage']
thisDoc = array(setOfWords2Vec(myVocabList, testEntry))
print (testEntry,'classified as: ',classifyNB(thisDoc,p0V,p1V,pAb))
def textParse(bigString): #input is big string, #output is word list
import re
listOfTokens = re.split(r'\W+', bigString)
list = [tok.lower() for tok in listOfTokens if len(tok) > 2]
return list
def textParse1(bigString): #input is big string, #output is word list
import jieba
listOfTokens = jieba.lcut(bigString)
list = [tok for tok in listOfTokens if u'一' <= tok[0] <= u'龥']
return list
def spamTest():
docList=[]; classList = []; fullText =[]
for i in range(1,26):
str1 = open('email/spam/%d.txt' % i,encoding='Shift_JIS').read()
wordList = textParse(str1)
docList.append(wordList)
fullText.extend(wordList)
classList.append(1)
str2 = open('email/ham/%d.txt' % i,encoding='Shift_JIS').read()
wordList = textParse(str2)
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
trainingSet = list(range(50)); testSet=[] #create test set
for i in range(10):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in trainingSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print ("classification error",docList[docIndex])
print ('the error rate is: ',float(errorCount)/len(testSet))
#return vocabList,fullText
def calcMostFreq(vocabList,fullText):
import operator
freqDict = {}
for token in vocabList:
freqDict[token]=fullText.count(token)
sortedFreq = sorted(freqDict.items(), key=operator.itemgetter(1), reverse=True)
return sortedFreq[:30]
def localWords(feed1,feed0):
import feedparser
docList=[]; classList = []; fullText =[]
minLen = min(len(feed1['entries']),len(feed0['entries']))
for i in range(minLen):
wordList = textParse1(feed1['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(1) #NY is class 1
wordList = textParse1(feed0['entries'][i]['summary'])
docList.append(wordList)
fullText.extend(wordList)
classList.append(0)
vocabList = createVocabList(docList)#create vocabulary
top30Words = calcMostFreq(vocabList,fullText) #remove top 30 words
for pairW in top30Words:
if pairW[0] in vocabList: vocabList.remove(pairW[0])
trainingSet = list(range(2*minLen)); testSet=[] #create test set
for i in range(20):
randIndex = int(random.uniform(0,len(trainingSet)))
testSet.append(trainingSet[randIndex])
del(trainingSet[randIndex])
trainMat=[]; trainClasses = []
for docIndex in testSet:#train the classifier (get probs) trainNB0
trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))
trainClasses.append(classList[docIndex])
p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
errorCount = 0
for docIndex in testSet: #classify the remaining items
wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
errorCount += 1
print ('the error rate is: ',float(errorCount)/len(testSet))
return vocabList,p0V,p1V
def getTopWords(ny,sf):
import operator
vocabList,p0V,p1V=localWords(ny,sf)
topNY=[]; topSF=[]
for i in range(len(p0V)):
if p0V[i] > -6.0 : topSF.append((vocabList[i],p0V[i]))
if p1V[i] > -6.0 : topNY.append((vocabList[i],p1V[i]))
sortedSF = sorted(topSF, key=lambda pair: pair[1], reverse=True)
print ("SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**SF**")
for item in sortedSF:
print (item[0])
sortedNY = sorted(topNY, key=lambda pair: pair[1], reverse=True)
print ("NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**NY**")
for item in sortedNY:
print (item[0])
test.py(个人测试代码)
# Author : hang
# @TIme : 2021-11-20 19:51
# @File : test.py
import machinelearninginaction.Ch04.bayes as bayes
# listOPosts,listClasses=bayes.loadDataSet()
# myVocabList = bayes.createVocabList(listOPosts)
# # bayes.setOfWords2Vec(myVocabList,listOPosts[0])
# trainMat = []
# for postinDoc in listOPosts:
# trainMat.append((bayes.setOfWords2Vec(myVocabList,postinDoc)))
# p0V,p1V,pAb = bayes.trainNB0(trainMat,listClasses)
# print(p0V,p1V,pAb)
# bayes.testingNB()
# bayes.spamTest()
import feedparser
ny=feedparser.parse('http://blog.sina.com.cn/rss/cng.xml')
sf=feedparser.parse('http://rss.yule.sohu.com/rss/yuletoutiao.xml')
# bayes.getTopWords(ny,nf)
a,b,c = bayes.localWords(ny,sf)