刚开始思考用递归来解决该问题:
class Solution {
public:
int minSum(vector<vector<int> > &grid, int m, int n,int i, int j){
if(i == m && j == n){
return grid[i][j];
}else if(i == m){
return grid[i][j] + minSum(grid,m,n,i,j+1);
}else if(j == n){
return grid[i][j] + minSum(grid,m,n,i+1,j);
}
int right = grid[i][j] + minSum(grid,m,n,i,j+1);
int down = grid[i][j] + minSum(grid,m,n,i+1,j);
int min = right < down ? right : down;
return min;
}
int minPathSum(vector<vector<int> >& grid) {
int m = grid.size()-1;
int n = grid[0].size()-1;
return minSum(grid,m,n,0,0);
}
};
结果运行结果正确,但是超时了
于是参考讨论区别人的做法有更快的解决方案,O(m*n)的时间复杂度,依次求出到每个点的最小路径和,一直到最右下角的格子,算法成功
class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
if(grid.size() == 0)
return 0;
int m = grid.size(), n = grid[0].size();
for(int i=1;i<m;i++)
grid[i][0] += grid[i-1][0];
for(int i=1;i<n;i++)
grid[0][i] += grid[0][i-1];
for(int i=1;i<m;i++)
for(int j=1;j<n;j++)
grid[i][j] += min(grid[i-1][j], grid[i][j-1]);
return grid[m-1][n-1];
}
};