1002. A+B for Polynomials (25)

本文介绍了一种解决多项式加法问题的算法实现方法,输入包含两个多项式的非零项系数及其指数,输出这两个多项式的和。文章通过C++实现了一个具体的程序案例,详细展示了如何读取输入数据、进行多项式相加并输出结果的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1002. A+B for Polynomials (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 ... NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, ..., K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < ... < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output
3 2 1.5 1 2.9 0 3.2

#include <stdio.h>
#include <iostream>
#include <stack>
#include <string.h>
#include <queue>
#include <cmath>
#include <vector>
#include <algorithm>
#include <map>
#include <set>
#include <string>
using namespace std;
typedef long long LL;
bool cmp(pair<int, double> a, pair<int, double> b)
{
    return a.first > b.first;
}
int main() {
    //freopen("in.txt", "r", stdin);
    //freopen("out.txt","w",stdout);
    map<int, double> mapp1;
    int n;
    cin >> n;
    for(int i = 0; i < n; i++){
        int esp;
        double coeff;
        cin >> esp >> coeff;
        if(mapp1[esp] != 0){
            mapp1[esp] += coeff;
        }else {
            mapp1[esp] = coeff;
        }
    }
    int m;
    cin >> m;
    for(int i = 0; i < m; i++){
        int esp;
        double coeff;
        cin >> esp >> coeff;
        if(mapp1[esp] != (double)0.0){
            mapp1[esp] += coeff;
        }else {
            mapp1[esp] = coeff;
        }
    }
    vector<pair<int, double>> v1(mapp1.begin(), mapp1.end());
    sort(v1.begin(), v1.end(), cmp);
    
    //有一个坑的地方 当系数互为相反数的时候 是不输出的 
    //所以要重新判断真实的大小 即size
    vector<pair<int, double> > v2;
    for(int i = 0; i < v1.size(); i++){
        if(v1[i].second != (double)0.0){
            pair<int, double> x(v1[i].first, v1[i].second);
            v2.push_back(x);
        }
    }
    cout << v2.size();
    for(int i = 0; i < v2.size(); i++){
        printf(" %d %.1lf", v2[i].first, v2[i].second);
    }

    return 0;
}

1002 A+B for Polynomials 是一道编程目,通常是在考察Java中处理多项式加法的问。在这个问中,你需要编写一个程序,让用户输入两个多项式的系数(如a_n*x^n + a_{n-1}*x^{n-1} + ... + a_1*x + a_0的形式),然后计算它们的和,并按照同样的形式表示出来。 在Java中,你可以创建一个`Polynomial`类,包含一个数组来存储系数和最高次数的信息。用户输入的每个多项式可以被解析成这样的结构,然后通过遍历并累加系数来完成加法操作。最后,将结果转换回字符串形式展示给用户。 以下是简化版的代码示例: ```java class Polynomial { int[] coefficients; int degree; // 构造函数,初始化数组 public Polynomial(int[] coeffs) { coefficients = coeffs; degree = coefficients.length - 1; } // 加法方法 Polynomial add(Polynomial other) { Polynomial result = new Polynomial(new int[coefficients.length + other.coefficients.length]); for (int i = 0; i < coefficients.length; ++i) { result.coefficients[i] += coefficients[i]; } for (int i = 0; i < other.coefficients.length; ++i) { result.coefficients[i + coefficients.length] += other.coefficients[i]; } result.degree = Math.max(degree, other.degree); return result; } @Override public String toString() { StringBuilder sb = new StringBuilder(); if (degree >= 0) { for (int i = degree; i >= 0; --i) { sb.append(coefficients[i]).append('*x^').append(i).append(" + "); } // 移除最后一个 " + " sb.setLength(sb.length() - 2); } else { sb.append("0"); } return sb.toString(); } } // 主函数示例 public static void main(String[] args) { Polynomial poly1 = new Polynomial(...); // 用户输入第一个多项式的系数 Polynomial poly2 = new Polynomial(...); // 用户输入第二个多项式的系数 Polynomial sum = poly1.add(poly2); System.out.println("Result: " + sum); } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值