类型 | 说明 |
---|---|
论文信息 | Communication-Efficient Learning of Deep Networks from Decentralized Data H.Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, Blaise Agüera y Arcas |
研究的问题 | 移动设备的去中心化数据的高效率通信的分布式联合平均算法 |
算法名称 | FederatedAveraging Algorithm(FedAVG) |
前景知识 | – |
有限和形式 | min_ω∈Rdf(ω) where f(ω)=def1n∑i=1nf_i(ω).\min\_{\omega\in\mathbb{R}^{d}} f\left(\omega\right) where f\left(\omega\right) \stackrel{\text{def}}{=}\frac{1}{n}\sum^{n}_{i=1}f\_{i}\left(\omega\right).min_ω∈Rdf(ω) where f(ω)=defn1i=1∑nf_i(ω).For a machine learning problem:fi(ω)=ℓ(xi,yi;ω)f_{i}\left(\omega\right)=\ell\left(x_{i},y_{i};\omega\right)fi(ω)=ℓ(xi,yi;ω) |
分布式形式 | f(ω)=∑k=1KnknFk(ω) where Fk(ω)=1nk∑i∈Pkfi(ω).f\left(\omega\right)=\sum^{K}_{k=1}\frac{n_{k}}{n}F_{k}\left(\omega\right) where F_{k}\left(\omega\right)=\frac{1}{n_{k}}\sum_{i\in\mathcal{P}_{k}}f_{i}\left(\omega\right).f(ω)=k=1∑K |
Communication-Efficient Learning of Deep Networks from Decentralized Data
最新推荐文章于 2024-12-03 18:10:14 发布