欧拉函数总结

在数论,对正整数n,欧拉函数是小于n的正整数中与n互质的数的数目(φ(1)=1)。此函数以其首名研究者欧拉命名(Euler's totient function),它又称为Euler's totient function、φ函数、欧拉商数等。 例如φ(8)=4,因为1,3,5,7均和8互质。 从欧拉函数引伸出来在环论方面的事实和拉格朗日定理构成了欧拉定理的证明。

常见用到欧拉函数有两种类型:

1)

每次只求一个因子,n 不是很多,但是 n 非常大的情况。

int phi(int n){ // ou la han shu
	int res = n;
	for(int i=2;i*i <= n;i++){
			res -= res / i;
		if(n%i == 0){
			while(n%i == 0){
				n /= i;
			}
		}
	}
	if(n > 1) res -= res / n;
	return res;
}

2)

求出1~n任意给定数的质因子,适用于题目中给的n比较多,但n不是很大的情况。

可以用数组存,也可以用其他容器存。

void init(){
	for(int i=0;i<maxn;i++){
		ph[i] = i;
	}
	for(int i=2;i<maxn;i++){
		if(ph[i] == i){
			for(int j=i;j<maxn;j+=i){
				ph[j] *= i-1;
				ph[j] /= i;
			}
		}
	}
}

 

<think>好的,我需要帮助用户了解欧拉函数的算法实现。首先,我要回顾一下欧拉函数的定义。根据引用[2]和[3],欧拉函数φ(n)是小于n的正整数中与n互质的数的数目。例如φ(8)=4,因为1,3,5,7和8互质。 接下来,用户想知道如何实现欧拉函数的算法。根据引用[3],欧拉函数的通式是φ(n) = n × Π(1 - 1/p),其中p是n的所有不同的质因数。所以,实现这个函数的关键步骤应该是分解质因数,然后应用这个公式。 首先,分解质因数。我需要找出n的所有不同质因数。例如,对于n=12,质因数是2和3,所以φ(12)=12×(1-1/2)×(1-1/3)=4。这一步可以通过试除法来实现,从2开始逐个试除,直到平方根为止。 然后,应用公式。每找到一个质因数p,就乘上(1-1/p),最后乘以n。需要注意的是,如果n最后剩下一个大于1的质数,也需要处理。 现在考虑代码实现。用户提供的引用[1]提到使用BigIntegers处理非常大的数字,但用户现在可能需要一个基础的实现方法。假设用户使用Python,可以写一个函数,首先分解质因数,然后计算结果。 需要注意的几个点:1. 处理n=1的情况,φ(1)=1。2. 在分解质因数时,避免重复因数,所以每次找到一个质因数后,要彻底除去所有该因数。例如,分解12时,先除以2得到3,再除以3,得到1,这样就不会重复计算因数2。 测试一下例子是否正确。例如,φ(8)=4,φ(12)=4,φ(7)=6(质数的情况)。代码是否能正确处理这些情况? 另外,引用[1]提到了对大数的处理,可能需要更高效的质因数分解方法,比如Pollard's Rho算法,但对于一般情况,试除法可能足够,尤其是当n不是特别大的时候。不过,试除法对于大数来说效率不高,这时候需要考虑优化算法,但用户可能先需要一个基础实现。 可能的错误点:在分解质因数时,忘记处理剩余的n可能也是质数的情况。比如,n=13,分解到最后的n=13,应该被算作一个质因数。 现在,把这些步骤整理成代码。编写一个函数euler_phi(n),返回φ(n)的值。首先处理n=0或1的特殊情况。然后对n进行质因数分解,记录所有不同的质因数,然后应用公式。 最后,生成相关问题。根据欧拉函数的应用,比如欧拉定理,或者优化算法的方法,或者比较不同分解质因数的方法的效率等。 总结,我需要给出欧拉函数的定义、算法步骤、代码实现以及相关问题。</think>### 欧拉函数算法实现 #### 1. 定义与公式 欧拉函数 $φ(n)$ 定义为**小于 $n$ 且与 $n$ 互质的正整数的个数**。其通式为: $$ φ(n) = n \cdot \prod_{p \mid n} \left(1 - \frac{1}{p}\right) $$ 其中 $p$ 是 $n$ 的质因数[^3]。 #### 2. 算法步骤 1. **质因数分解**:将 $n$ 分解为不同质因数的乘积。 2. **应用公式**:遍历每个质因数 $p$,计算 $\prod \left(1 - \frac{1}{p}\right)$,最后乘以 $n$。 #### 3. 代码实现(Python) ```python def euler_phi(n): if n <= 0: return 0 result = n # 质因数分解 p = 2 while p * p <= n: if n % p == 0: while n % p == 0: n //= p result -= result // p # 等价于 result *= (1 - 1/p) p += 1 # 处理剩余的质因数(如n是质数的情况) if n > 1: result -= result // n return result ``` #### 示例验证 - **输入:8** 质因数为 2,计算过程:$8 \cdot (1 - 1/2) = 4$,输出为 4。 - **输入:7** 7 是质数,计算过程:$7 \cdot (1 - 1/7) = 6$,输出为 6[^2]。 #### 4. 优化方向 - **大数处理**:使用 Pollard's Rho 算法加速质因数分解[^1]。 - **预计算质数表**:用筛法预存质数,减少试除次数。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值