Description
Now, here is a fuction:
F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100)
Can you find the minimum value when x is between 0 and 100.
F(x) = 6 * x^7+8*x^6+7*x^3+5*x^2-y*x (0 <= x <=100)
Can you find the minimum value when x is between 0 and 100.
Input
The first line of the input contains an integer T(1<=T<=100) which means the number of test cases. Then T lines follow, each line has only one real numbers Y.(0 < Y <1e10)
Output
Just the minimum value (accurate up to 4 decimal places),when x is between 0 and 100.
Sample Input
2 100 200
Sample Output
-74.4291 -178.8534
二分三分都可以做,三分更快些。
二分的做法是求导函数。然后求导函数为0的点的值便是最小值。
1.二分法(15ms)
#include<stdio.h>
#include <math.h>
double F1(double x, double y)
{
return 42 * pow(x, 6) + 48 * pow(x, 5) + 21 * pow(x, 2) + 10 * x - y;
}
double calculate(double x, double y)
{
return 6 * pow(x, 7) + 8 * pow(x, 6) + 7 * pow(x, 3) + 5 * pow(x, 2) - y*x;
}
int main()
{
int ynum;
scanf("%d", &ynum);
while (ynum--)
{
double Y;
scanf("%lf", &Y);
double lit = pow(10.0, -5);
double min = 0, max = 100;
double mid = (max + min) / 2;
while (min < max&&fabs(F1(mid, Y)) > lit)
{
if (F1(mid, Y) > 0)
{
max = mid;
}
else if (F1(mid, Y) < 0)
{
min = mid;
}
else
break;
mid = (max + min) / 2;
}
if (mid>0 && mid<100)
{
printf("%.4f\n", calculate(mid,Y));
}
else
{
printf("0.0");
}
}
return 0;
}
2.三分法(0ms)
#include <stdio.h>
#include <math.h>
#define eps 1e-8
double y;
double cal(double x)
{
return 6 * pow(x,7)+8*pow(x,6)+7*pow(x,3)+5*pow(x,2)-y*x;
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%lf",&y);
double low=0,high=100;
double mid, midmid;
while ( low + eps < high )
{
mid = (low + high) / 2;
midmid = (mid + high ) / 2;
double cmid = cal(mid);
double cmidmid = cal(midmid);
if ( cmid < cmidmid )
high = midmid;
else
low = mid;
}
printf("%.4lf\n",cal(high));
}
return 0;
}