POJ 3090 Visible Lattice Points

本文介绍了一种算法,用于解决在给定尺寸的格点阵中,从原点出发可见格点的数量问题。通过分析斜率特性及利用欧拉函数进行优化计算,实现了高效求解。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A - Visible Lattice Points
Time Limit:1000MS    Memory Limit:65536KB    64bit IO Format:%I64d & %I64u

Description

A lattice point (x, y) in the first quadrant (x and y are integers greater than or equal to 0), other than the origin, is visible from the origin if the line from (0, 0) to (x, y) does not pass through any other lattice point. For example, the point (4, 2) is not visible since the line from the origin passes through (2, 1). The figure below shows the points (x, y) with 0 ≤ x, y ≤ 5 with lines from the origin to the visible points.

Write a program which, given a value for the size, N, computes the number of visible points (x, y) with 0 ≤ x, yN.

Input

The first line of input contains a single integer C (1 ≤ C ≤ 1000) which is the number of datasets that follow.

Each dataset consists of a single line of input containing a single integer N (1 ≤ N ≤ 1000), which is the size.

Output

For each dataset, there is to be one line of output consisting of: the dataset number starting at 1, a single space, the size, a single space and the number of visible points for that size.

Sample Input

4
2
4
5
231

Sample Output

1 2 5
2 4 13
3 5 21
4 231 32549

题目大概意思是说。给一个(n)*(n)的点阵,从(0,0)向外发出直线,遇到的第一个点会挡住后面的点,问这个点阵里一共能有多少个点。

分析:从斜率入手。

不管n是多少,斜率为0/n,n/0的两条上面始终只会有一个点,斜率为n/n的上也只会有一个点。

因为点阵关于y=x直线对称,所以只要算一半再乘二就好。

结合这些特殊的性质,答案便是,斜率为n/1到(n-1)/n的直线之间的点数*2+3.

重点在于如何求斜率为n/1到(n-1)/n的直线之间的点数。

观察可以得到,对于n×n,可以从0,0连接到(n,0)到(n,n)上,斜率将会是1/n,2/n......(n-1)/n;

可看做分式a/b的形式,如果a,b可以约分,说明前面已经计算过了这个斜率。就比如从(0,0)到(2,1)和从(0,0)到(4,2),(4,2)这个点次数被挡住,不计入总数。

问题变转化为求,不大于n,并且和n互质的数的个数。

欧拉函数。

做法:欧拉函数先打表,然后从i=3到i=n求欧拉函数,累加,就得到斜率为n/1到(n-1)/n的直线之间的点数,最后乘2加3,结束。

#include <stdio.h>
#define N 1005
int phi[N];
void phi_table(int n)
{
    for(int i=2;i<=n;i++)phi[i]=0;
    phi[1]=1;
    for(int i=2;i<=n;i++)
        if(!phi[i])
            for(int j=i;j<=n;j+=i)
            {
                if(!phi[j])phi[j]=j;
                phi[j]=phi[j]/i*(i-1);
            }
}

int main()
{
        int t,n;
        scanf("%d",&t);
        phi_table(1000);
        int i=1;
        while(i<=t)
        {
                int sum=0;
                scanf("%d",&n);
                for(int i=2;i<=n;i++)
                        sum+=phi[i];
                printf("%d %d %d\n",i++,n,sum*2+3);
        }
        return 0;
}

PS:看到STATUS里有0MS,难道是把欧拉函数表直接写常数表。。。

这是一道比较经典的计数问题。题目描述如下: 给定一个 $n \times n$ 的网格图,其中一些格子被标记为障碍。一个连通块是指一些被标记为障碍的格子的集合,满足这些格子在网格图中连通。一个格子是连通的当且仅当它与另一个被标记为障碍的格子在网格图中有公共边。 现在,你需要计算在这个网格图中,有多少个不同的连通块,满足这个连通块的大小(即包含的格子数)恰好为 $k$。 这是一道比较经典的计数问题,一般可以通过计算生成函数的方法来解决。具体来说,我们可以定义一个生成函数 $F(x)$,其中 $[x^k]F(x)$ 表示大小为 $k$ 的连通块的个数。那么,我们可以考虑如何计算这个生成函数。 对于一个大小为 $k$ 的连通块,我们可以考虑它的形状。具体来说,我们可以考虑以该连通块的最左边、最上边的格子为起点,从上到下、从左到右遍历该连通块,把每个格子在该连通块中的相对位置记录下来。由于该连通块的大小为 $k$,因此这些相对位置一定是 $(x,y) \in [0,n-1]^2$ 中的 $k$ 个不同点。 现在,我们需要考虑如何计算这些点对应的连通块是否合法。具体来说,我们可以考虑从左到右、从上到下依次处理这些点,对于每个点 $(x,y)$,我们需要考虑它是否能够与左边的点和上边的点连通。具体来说,如果 $(x-1,y)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们就是连通的;同样,如果 $(x,y-1)$ 和 $(x,y)$ 都在该连通块中且它们在网格图中有公共边,那么它们也是连通的。如果 $(x,y)$ 与左边和上边的点都不连通,那么说明这个点不属于该连通块。 考虑到每个点最多只有两个方向需要检查,因此时间复杂度为 $O(n^2 k)$。不过,我们可以使用类似于矩阵乘法的思想,将这个过程优化到 $O(k^3)$ 的时间复杂度。 具体来说,我们可以设 $f_{i,j,k}$ 表示状态 $(i,j)$ 所代表的点在连通块中,且连通块的大小为 $k$ 的方案数。显然,对于一个合法的 $(i,j,k)$,我们可以考虑 $(i-1,j,k-1)$ 和 $(i,j-1,k-1)$ 这两个状态,然后把点 $(i,j)$ 加入到它们所代表的连通块中。因此,我们可以设计一个 $O(k^3)$ 的 DP 状态转移,计算 $f_{i,j,k}$。 具体来说,我们可以考虑枚举连通块所包含的最右边和最下边的格子的坐标 $(x,y)$,然后计算 $f_{x,y,k}$。对于一个合法的 $(x,y,k)$,我们可以考虑将 $(x,y)$ 所代表的点加入到 $(x-1,y,k-1)$ 和 $(x,y-1,k-1)$ 所代表的连通块中。不过,这里需要注意一个细节:如果 $(x-1,y)$ 和 $(x,y)$ 在网格图中没有相邻边,那么它们不能算作连通的。因此,我们需要特判这个情况。 最终,$f_{n,n,k}$ 就是大小为 $k$ 的连通块的个数,时间复杂度为 $O(n^2 k + k^3)$。 参考代码:
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值