Redis(二)—— 持久化

Redis(二)—— 持久化

1、简介

什么是持久化?

利用永久性存储介质将数据进行保存,在特定的时间将保存的数据进行恢复的工作机制称为持久化。

为什么要持久化

防止数据的意外丢失,确保数据安全性

持久化过程保存什么
  • 将当前数据状态进行保存,快照形式,存储数据结果,存储格式简单,关注点在数据
  • 将数据的操作过程进行保存,日志形式,存储操作过程,存储格式复杂,关注点在数据的操作过程

img

2、RDB

RDB启动方式——save
  • 命令

    saveCopy
    
  • 作用

    手动执行一次保存操作

RDB配置相关命令
  • dbfilename dump.rdb
    • 说明:设置本地数据库文件名,默认值为 dump.rdb
    • 经验:通常设置为dump-端口号.rdb
  • dir
    • 说明:设置存储.rdb文件的路径
    • 经验:通常设置成存储空间较大的目录中,目录名称data
  • rdbcompression yes
    • 说明:设置存储至本地数据库时是否压缩数据,默认为 yes,采用 LZF 压缩
    • 经验:通常默认为开启状态,如果设置为no,可以节省 CPU 运行时间,但会使存储的文件变大(巨大)
  • rdbchecksum yes
    • 说明:设置是否进行RDB文件格式校验,该校验过程在写文件和读文件过程均进行
    • 经验:通常默认为开启状态,如果设置为no,可以节约读写性过程约10%时间消耗,但是存储一定的数据损坏风险
RDB启动方式——save指令工作原理

img

注意save指令的执行会阻塞当前Redis服务器,直到当前RDB过程完成为止,有可能会造成长时间阻塞,线上环境不建议使用

RDB启动方式——bgsave
  • 命令

    bgsaveCopy
    
  • 作用

    手动启动后台保存操作,但不是立即执行

RDB启动方式 —— bgsave指令工作原理

img

注意bgsave命令是针对save阻塞问题做的优化。Redis内部所有涉及到RDB操作都采用bgsave的方式,save命令可以放弃使用,推荐使用bgsave

bgsave的保存操作可以通过redis的日志查看

docker logs myredisCopy
RDB启动方式 ——save配置
  • 配置

    save second changesCopy
    
  • 作用

    满足限定时间范围内key的变化数量达到指定数量即进行持久化

  • 参数

    • second:监控时间范围
    • changes:监控key的变化量
  • 配置位置

    conf文件中进行配置

RDB启动方式 ——save配置原理

img

注意

  • save配置要根据实际业务情况进行设置,频度过高或过低都会出现性能问题,结果可能是灾难性的
  • save配置中对于second与changes设置通常具有互补对应关系(一个大一个小),尽量不要设置成包含性关系
  • save配置启动后执行的是bgsave操作
RDB启动方式对比

img

RDB优缺点
  • 优点
    • RDB是一个紧凑压缩的二进制文件,存储效率较高
    • RDB内部存储的是redis在某个时间点的数据快照,非常适合用于数据备份,全量复制等场景
    • RDB恢复数据的速度要比AOF很多
    • 应用:服务器中每X小时执行bgsave备份,并将RDB文件拷贝到远程机器中,用于灾难恢复
  • 缺点
    • RDB方式无论是执行指令还是利用配置,无法做到实时持久化,具有较大的可能性丢失数据
    • bgsave指令每次运行要执行fork操作创建子进程,要牺牲掉一些性能
    • Redis的众多版本中未进行RDB文件格式的版本统一,有可能出现各版本服务之间数据格式无法兼容现象

3、AOF

AOF概念
  • AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中命令,以达到恢复数据的目的。与RDB相比可以简单描述为改记录数据为记录数据产生的过程
  • AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式
AOF写数据过程

img

AOF写数据三种策略(appendfsync)
  • always
    • 每次写入操作均同步到AOF文件中,数据零误差,性能较低,不建议使用
  • everysec
    • 每秒将缓冲区中的指令同步到AOF文件中,数据准确性较高,性能较高建议使用,也是默认配置
    • 在系统突然宕机的情况下丢失1秒内的数据
  • no
    • 由操作系统控制每次同步到AOF文件的周期,整体过程不可控
AOF功能开启
  • 配置

    appendonly yes|noCopy
    
    • 作用
      • 是否开启AOF持久化功能,默认为不开启状态
  • 配置

    appendfsync always|everysec|noCopy
    
    • 作用
      • AOF写数据策略
AOF重写
作用
  • 降低磁盘占用量,提高磁盘利用率
  • 提高持久化效率,降低持久化写时间,提高IO性能
  • 降低数据恢复用时,提高数据恢复效率
规则
  • 进程内已超时的数据不再写入文件

  • 忽略无效指令,重写时使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令

    • 如del key1、 hdel key2、srem key3、set key4 111、set key4 222等
  • 对同一数据的多条写命令合并为一条命令

    • 如lpush list1 a、lpush list1 b、 lpush list1 c 可以转化为:lpush list1 a b c
    • 为防止数据量过大造成客户端缓冲区溢出,对list、set、hash、zset等类型,每条指令最多写入64个元素
如何使用
  • 手动重写

    bgrewriteaofCopy
    
  • 自动重写

    auto-aof-rewrite-min-size size 
    auto-aof-rewrite-percentage percentageCopy
    
工作原理

img

AOF自动重写
  • 自动重写触发条件设置

    //触发重写的最小大小
    auto-aof-rewrite-min-size size 
    //触发重写须达到的最小百分比
    auto-aof-rewrite-percentage percentCopy
    
  • 自动重写触发比对参数( 运行指令info Persistence获取具体信息 )

    //当前.aof的文件大小
    aof_current_size 
    //基础文件大小
    aof_base_sizeCopy
    
  • 自动重写触发条件

    img

工作原理

img

img

img

缓冲策略

AOF缓冲区同步文件策略,由参数appendfsync控制

  • write操作会触发延迟写(delayed write)机制,Linux在内核提供页缓冲区用 来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依 赖于系统调度机制,列如:缓冲区页空间写满或达到特定时间周期。同步文件之 前,如果此时系统故障宕机,缓冲区内数据将丢失。
  • fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞知道 写入硬盘完成后返回,保证了数据持久化。

4、RDB VS AOF

img

RDB与AOF的选择
  • 对数据非常敏感,建议使用默认的 AOF 持久化方案

    • AOF持久化策略使用everysecond,每秒钟fsync一次。该策略redis仍可以保持很好的处理性能,当出现问题时,最多丢失0-1秒内的数据。
    • 注意:由于AOF文件存储体积较大,且恢复速度较慢
  • 数据呈现阶段有效性,建议使用RDB持久化方案

    • 数据可以良好的做到阶段内无丢失(该阶段是开发者或运维人员手工维护的),且恢复速度较快,阶段 点数据恢复通常采用RDB方案
    • 注意:利用RDB实现紧凑的数据持久化会使Redis降的很低
  • 综合比对

    • RDB与AOF的选择实际上是在做一种权衡,每种都有利有弊
    • 如不能承受数分钟以内的数据丢失,对业务数据非常敏感,选用AOF
    • 如能承受数分钟以内的数据丢失,且追求大数据集的恢复速度,选用RDB
    • 灾难恢复选用RDB
    • 双保险策略,同时开启 RDB 和 AOF,重启后,Redis优先使用 AOF 来恢复数据,降低丢失数据
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值