Redis(二)—— 持久化
文章目录
1、简介
什么是持久化?
利用永久性存储介质将数据进行保存,在特定的时间将保存的数据进行恢复的工作机制称为持久化。
为什么要持久化
防止数据的意外丢失,确保数据安全性
持久化过程保存什么
- 将当前数据状态进行保存,快照形式,存储数据结果,存储格式简单,关注点在数据
- 将数据的操作过程进行保存,日志形式,存储操作过程,存储格式复杂,关注点在数据的操作过程
2、RDB
RDB启动方式——save
-
命令
saveCopy
-
作用
手动执行一次保存操作
RDB配置相关命令
- dbfilename dump.rdb
- 说明:设置本地数据库文件名,默认值为 dump.rdb
- 经验:通常设置为dump-端口号.rdb
- dir
- 说明:设置存储.rdb文件的路径
- 经验:通常设置成存储空间较大的目录中,目录名称data
- rdbcompression yes
- 说明:设置存储至本地数据库时是否压缩数据,默认为 yes,采用 LZF 压缩
- 经验:通常默认为开启状态,如果设置为no,可以节省 CPU 运行时间,但会使存储的文件变大(巨大)
- rdbchecksum yes
- 说明:设置是否进行RDB文件格式校验,该校验过程在写文件和读文件过程均进行
- 经验:通常默认为开启状态,如果设置为no,可以节约读写性过程约10%时间消耗,但是存储一定的数据损坏风险
RDB启动方式——save指令工作原理
注意:save指令的执行会阻塞当前Redis服务器,直到当前RDB过程完成为止,有可能会造成长时间阻塞,线上环境不建议使用。
RDB启动方式——bgsave
-
命令
bgsaveCopy
-
作用
手动启动后台保存操作,但不是立即执行
RDB启动方式 —— bgsave指令工作原理
注意: bgsave命令是针对save阻塞问题做的优化。Redis内部所有涉及到RDB操作都采用bgsave的方式,save命令可以放弃使用,推荐使用bgsave
bgsave的保存操作可以通过redis的日志查看
docker logs myredisCopy
RDB启动方式 ——save配置
-
配置
save second changesCopy
-
作用
满足限定时间范围内key的变化数量达到指定数量即进行持久化
-
参数
- second:监控时间范围
- changes:监控key的变化量
-
配置位置
在conf文件中进行配置
RDB启动方式 ——save配置原理
注意:
- save配置要根据实际业务情况进行设置,频度过高或过低都会出现性能问题,结果可能是灾难性的
- save配置中对于second与changes设置通常具有互补对应关系(一个大一个小),尽量不要设置成包含性关系
- save配置启动后执行的是bgsave操作
RDB启动方式对比
RDB优缺点
- 优点
- RDB是一个紧凑压缩的二进制文件,存储效率较高
- RDB内部存储的是redis在某个时间点的数据快照,非常适合用于数据备份,全量复制等场景
- RDB恢复数据的速度要比AOF快很多
- 应用:服务器中每X小时执行bgsave备份,并将RDB文件拷贝到远程机器中,用于灾难恢复
- 缺点
- RDB方式无论是执行指令还是利用配置,无法做到实时持久化,具有较大的可能性丢失数据
- bgsave指令每次运行要执行fork操作创建子进程,要牺牲掉一些性能
- Redis的众多版本中未进行RDB文件格式的版本统一,有可能出现各版本服务之间数据格式无法兼容现象
3、AOF
AOF概念
- AOF(append only file)持久化:以独立日志的方式记录每次写命令,重启时再重新执行AOF文件中命令,以达到恢复数据的目的。与RDB相比可以简单描述为改记录数据为记录数据产生的过程
- AOF的主要作用是解决了数据持久化的实时性,目前已经是Redis持久化的主流方式
AOF写数据过程
AOF写数据三种策略(appendfsync)
- always
- 每次写入操作均同步到AOF文件中,数据零误差,性能较低,不建议使用
- everysec
- 每秒将缓冲区中的指令同步到AOF文件中,数据准确性较高,性能较高 ,建议使用,也是默认配置
- 在系统突然宕机的情况下丢失1秒内的数据
- no
- 由操作系统控制每次同步到AOF文件的周期,整体过程不可控
AOF功能开启
-
配置
appendonly yes|noCopy
- 作用
- 是否开启AOF持久化功能,默认为不开启状态
- 作用
-
配置
appendfsync always|everysec|noCopy
- 作用
- AOF写数据策略
- 作用
AOF重写
作用
- 降低磁盘占用量,提高磁盘利用率
- 提高持久化效率,降低持久化写时间,提高IO性能
- 降低数据恢复用时,提高数据恢复效率
规则
-
进程内已超时的数据不再写入文件
-
忽略无效指令,重写时使用进程内数据直接生成,这样新的AOF文件只保留最终数据的写入命令
- 如del key1、 hdel key2、srem key3、set key4 111、set key4 222等
-
对同一数据的多条写命令合并为一条命令
- 如lpush list1 a、lpush list1 b、 lpush list1 c 可以转化为:lpush list1 a b c
- 为防止数据量过大造成客户端缓冲区溢出,对list、set、hash、zset等类型,每条指令最多写入64个元素
如何使用
-
手动重写
bgrewriteaofCopy
-
自动重写
auto-aof-rewrite-min-size size auto-aof-rewrite-percentage percentageCopy
工作原理
AOF自动重写
-
自动重写触发条件设置
//触发重写的最小大小 auto-aof-rewrite-min-size size //触发重写须达到的最小百分比 auto-aof-rewrite-percentage percentCopy
-
自动重写触发比对参数( 运行指令info Persistence获取具体信息 )
//当前.aof的文件大小 aof_current_size //基础文件大小 aof_base_sizeCopy
-
自动重写触发条件
工作原理
缓冲策略
AOF缓冲区同步文件策略,由参数appendfsync控制
- write操作会触发延迟写(delayed write)机制,Linux在内核提供页缓冲区用 来提高硬盘IO性能。write操作在写入系统缓冲区后直接返回。同步硬盘操作依 赖于系统调度机制,列如:缓冲区页空间写满或达到特定时间周期。同步文件之 前,如果此时系统故障宕机,缓冲区内数据将丢失。
- fsync针对单个文件操作(比如AOF文件),做强制硬盘同步,fsync将阻塞知道 写入硬盘完成后返回,保证了数据持久化。
4、RDB VS AOF
RDB与AOF的选择
-
对数据非常敏感,建议使用默认的 AOF 持久化方案
- AOF持久化策略使用everysecond,每秒钟fsync一次。该策略redis仍可以保持很好的处理性能,当出现问题时,最多丢失0-1秒内的数据。
- 注意:由于AOF文件存储体积较大,且恢复速度较慢
-
数据呈现阶段有效性,建议使用RDB持久化方案
- 数据可以良好的做到阶段内无丢失(该阶段是开发者或运维人员手工维护的),且恢复速度较快,阶段 点数据恢复通常采用RDB方案
- 注意:利用RDB实现紧凑的数据持久化会使Redis降的很低
-
综合比对
- RDB与AOF的选择实际上是在做一种权衡,每种都有利有弊
- 如不能承受数分钟以内的数据丢失,对业务数据非常敏感,选用AOF
- 如能承受数分钟以内的数据丢失,且追求大数据集的恢复速度,选用RDB
- 灾难恢复选用RDB
- 双保险策略,同时开启 RDB 和 AOF,重启后,Redis优先使用 AOF 来恢复数据,降低丢失数据