Code:
#include <bits/stdc++.h>
#define setIO(s) freopen(s".in", "r", stdin)
#define maxn 500004
#define LOG 23
#define inf 100000000000
#define ll long long
using namespace std;
vector <int> G[maxn];
int edges, tim, n, top;
int hd[maxn], to[maxn << 1], nex[maxn << 1], val[maxn << 1];
int dfn[maxn], f[LOG][maxn], arr[maxn], S[maxn], mk[maxn], dep[maxn];
ll mn[maxn];
inline void addedge(int u, int v, int c)
{
nex[++edges] = hd[u], hd[u] = edges, to[edges] = v, val[edges] = c;
}
void dfs1(int u, int ff)
{
f[0][u] = ff;
for(int i = 1; i < 22; ++i) f[i][u] = f[i - 1][f[i - 1][u]];
dep[u] = dep[ff] + 1, dfn[u] = ++tim;
for(int i = hd[u]; i ; i = nex[i])
{
int v = to[i];
if(v == ff) continue;
mn[v] = min(mn[u], 1ll*val[i]);
dfs1(v, u);
}
}
inline int LCA(int a, int b)
{
if(dep[a] > dep[b]) swap(a, b);
if(dep[a] != dep[b])
{
for(int i = 21; i >= 0; --i) if(dep[f[i][b]] >= dep[a]) b = f[i][b];
}
if(a == b) return a;
for(int i = 21; i >= 0; --i) if(f[i][a] != f[i][b]) a = f[i][a], b = f[i][b];
return f[0][a];
}
bool cmp(int a, int b)
{
return dfn[a] < dfn[b];
}
inline void add_edge(int u, int v)
{
G[u].push_back(v);
}
inline void insert(int x)
{
if(top <= 1)
{
S[++top] = x;
return;
}
int lca = LCA(x, S[top]);
if(lca == S[top]) return;
while(top > 1 && dep[S[top - 1]] >= dep[lca]) add_edge(S[top - 1], S[top]), --top;
if(S[top] != lca) add_edge(lca, S[top]), S[top] = lca;
S[++top] = x;
}
ll DP(int x)
{
ll sum = 0, re;
for(int i = 0; i < G[x].size(); ++i) sum += DP(G[x][i]);
if(mk[x]) re = mn[x];
else re = min(mn[x], sum);
mk[x] = 0;
G[x].clear();
return re;
}
int main()
{
// setIO("input");
scanf("%d",&n);
for(int i = 1; i < n ; ++i)
{
int a, b, c;
scanf("%d%d%d",&a,&b,&c), addedge(a, b, c), addedge(b, a, c);
}
dep[1] = 1, mn[1] = inf, dfs1(1, 0);
int Q;
scanf("%d",&Q);
while(Q--)
{
int k;
scanf("%d",&k);
for(int i = 1; i <= k ; ++i) scanf("%d",&arr[i]);
sort(arr + 1, arr + 1 + k, cmp);
S[++top] = 1;
for(int i = 1; i <= k ; ++i) insert(arr[i]), mk[arr[i]] = 1;
while(top > 0) add_edge(S[top - 1], S[top]) , --top;
printf("%lld\n",DP(1));
for(int i = 1; i <= k ; ++i) mk[arr[i]] = 0;
}
return 0;
}
本文深入探讨了在树形数据结构中,使用最低公共祖先(LCA)算法和动态规划(DP)来解决复杂路径最小值问题的方法。通过具体的C++代码实现,展示了如何构建树的邻接矩阵,进行深度优先搜索,以及如何利用LCA和DP求解从根节点到每个叶子节点的路径上最小边权值。

被折叠的 条评论
为什么被折叠?



