Description
FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain makes them shake in their hooves. They have decided to put a rain siren on the farm to let them know when rain is approaching. They intend to create a rain evacuation plan so that all the cows can get to shelter before the rain begins. Weather forecasting is not always correct, though. In order to minimize false alarms, they want to sound the siren as late as possible while still giving enough time for all the cows to get to some shelter. The farm has F (1 <= F <= 200) fields on which the cows graze. A set of P (1 <= P <= 1500) paths connects them. The paths are wide, so that any number of cows can traverse a path in either direction. Some of the farm's fields have rain shelters under which the cows can shield themselves. These shelters are of limited size, so a single shelter might not be able to hold all the cows. Fields are small compared to the paths and require no time for cows to traverse. Compute the minimum amount of time before rain starts that the siren must be sounded so that every cow can get to some shelter.
Input
* Line 1: Two space-separated integers: F and P
* Lines 2..F+1: Two space-separated integers that describe a field. The first integer (range: 0..1000) is the number of cows in that field. The second integer (range: 0..1000) is the number of cows the shelter in that field can hold. Line i+1 describes field i. * Lines F+2..F+P+1: Three space-separated integers that describe a path. The first and second integers (both range 1..F) tell the fields connected by the path. The third integer (range: 1..1,000,000,000) is how long any cow takes to traverse it.
Output
* Line 1: The minimum amount of time required for all cows to get under a shelter, presuming they plan their routes optimally. If it not possible for the all the cows to get under a shelter, output "-1".
#include<bits/stdc++.h>
#define setIO(s) freopen(s".in","r",stdin)
#define maxn 1000000
#define inf 10000000000000
#define ll long long
using namespace std;
namespace Dinic{
struct Edge{
int from,to,cap;
Edge(int u=0,int v=0,int c=0):from(u),to(v),cap(c){}
};
vector<int>G[500];
vector<Edge>edges;
queue<int>Q;
int vis[500],d[500],curr[500];
int s,t;
void addedge(int u,int v,int c){
edges.push_back(Edge(u,v,c)),edges.push_back(Edge(v,u,0));
int m=edges.size();
G[u].push_back(m-2),G[v].push_back(m-1);
}
int BFS(){
memset(vis,0,sizeof(vis));
d[s]=0,vis[s]=1, Q.push(s);
while(!Q.empty()){
int u=Q.front();Q.pop();
for(int sz=G[u].size(),i=0;i<sz;++i){
Edge r=edges[G[u][i]];
if(!vis[r.to]&&r.cap>0) {
vis[r.to]=1,d[r.to]=d[u]+1;
Q.push(r.to);
}
}
}
return vis[t];
}
int dfs(int x,int cur){
if(x==t) return cur;
int f,flow=0;
for(int sz=G[x].size(),i=curr[x];i<sz;++i){
curr[x]=i;
Edge r=edges[G[x][i]];
if(d[r.to]==d[x]+1&&r.cap>0){
f=dfs(r.to,min(cur,r.cap));
cur-=f,flow+=f,edges[G[x][i]].cap-=f,edges[G[x][i]^1].cap+=f;
}
if(cur<=0) break;
}
return flow;
}
int maxflow(){
int flow=0;
while(BFS()) memset(curr,0,sizeof(curr)),flow+=dfs(s,10000000);
return flow;
}
void re(){
for(int i=0;i<500;++i) G[i].clear();
edges.clear();
}
};
#define row1(i) (i)
#define row2(i) (i+n)
int C[maxn],num[maxn],sums=0,n;
long long d[500][500];
bool check(ll tmp)
{
Dinic::re();
int s=0,t=row2(n+1);
Dinic::s=s,Dinic::t=t;
for(int i=1;i<=n;++i)
{
if(num[i]) Dinic::addedge(s,row1(i),num[i]);
if(C[i]) Dinic::addedge(row2(i),t,C[i]);
}
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j)
{
if(i!=j && d[i][j]<=tmp) Dinic::addedge(row1(i), row2(j), 10000000);
}
return Dinic::maxflow() >= sums;
}
int main()
{
// setIO("input");
int m;
scanf("%d%d",&n,&m);
for(int i=1;i<=n;++i) scanf("%d%d",&num[i],&C[i]),sums+=num[i];
for(int i=0;i<=230;++i)
for(int j=0;j<=230;++j) d[i][j]=inf;
for(int i=0;i<=230;++i) d[i][i]=0;
for(int i=1;i<=m;++i)
{
int u,v;
ll c;
scanf("%d%d%lld",&u,&v,&c);
if(u!=v) d[u][v]=d[v][u]=min(d[u][v],c);
}
for(int k=1;k<=n;++k)
for(int i=1;i<=n;++i)
for(int j=1;j<=n;++j) d[i][j]=min(d[i][j],d[i][k]+d[k][j]);
ll l=0,r=100000000000000,ans=-1;
while(l<=r)
{
ll mid=(l+r)>>1;
if(check(mid)) ans=mid,r=mid-1;
else l=mid+1;
}
printf("%lld\n",ans);
return 0;
}
探讨了在预测天气不完全准确的情况下,如何利用算法帮助牛群在农场中找到最佳避雨路径,确保所有牛能在雨前到达避雨处。算法通过计算农场各区域之间的最短路径,结合二分搜索和Dinic最大流算法,确定触发避雨警报的最佳时机。
643

被折叠的 条评论
为什么被折叠?



