周志华 《机器学习》之 第十章(降维与度量学习)概念总结

本文介绍了降维技术在图像识别中的应用,重点讲述了PCA主成分分析算法,并对比了K邻近学习、低维嵌入等方法。同时,还讨论了线性降维、核化线性降维、流形学习及度量学习等技术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

降维在一起图像识别过程也经常被采用的一种分类算法,例如二维数据经过投影变为一维数据,从而更好的表征数据的特征,再进行识别。在前面章节中提到过LDA(线性判别分析)也可以当做一种简单降维处理。在周老师的这章中主要讲述PCA主成分分析算法对高维数据进行降维。降维是一种解决维数灾难的重要途径。书中从如下几节进行介绍:

1、K邻近学习

k 近邻学习是一种监督学习算法,在给定的训练样本集中,基于某种距离度量,找出与训练集最靠近的k个训练样本,然后基于这 k 个邻居信息来进行预测。
投票法:通常在分类任务中使用,判别方法是选择这k个样本中出现最多的雷冰标记作为预测结果。
平均法:通常在回归任务中使用,判别方法是将这 k <script type="math/tex" id="MathJax-Element-443">k</script>个样本的实值输出标记的平均值最为预测结果。
加权平均或加权投票:根据距离远近来决定权重,距离越近,权重越大。

2、低维嵌入

维数灾难:
缓解维数灾难方法:降维(维数约简),也就是通过某种数学变换将原始高维属性空间转变为一个低维“子空间”,在这个子空间中样本密度大幅提高,距离计算也变得更为容易。
在很多时候,人们观测或收集到的数据样本虽然是高维的,但与学习任务密切相关的也许仅是某个低维分布,即高维空间中的一个低维嵌入。
线性降维方法:基于线性变换来进行降维的方法。

3、主成分分析(PCA)

参阅:http://blog.youkuaiyun.com/hellotruth/article/details/30750823

4、核化线性降维

在很多问题上,可能需要非线性映射才能找到恰当的低维嵌入。那么非线性降维常用的一种方法,就是基于核技巧对线性降维方法进行“核化”。例如核主成分分析(KPCA)

5、流形学习

流行学习是一类借鉴了拓扑流形概念的降维方法。常用的流行学习方法有等度量映射和局部线性嵌入。

6、度量学习

在机器学习中,对高维数据进行降维的主要目的是希望找到一个合适的低维空间,在此空间中进行学习能比原始空间性能更好。事实上,每个空间对应了在样本属性上定义的一个距离度量,而寻找合适的空间,实质上就是在寻找一个合适的距离度量。因此我们可以尝试直接学习出一个合适的距离度量。也就是度量学习。
马氏距离:

### 关于周志华机器学习》(西瓜书)第二章的学习笔记 #### 模型评估选择概述 模型评估选择是机器学习领域的重要组成部分,旨在通过合理的方法评价不同模型的表现并挑选最优者。这一过程不仅涉及如何衡量单个模型的好坏,还包括怎样对比多个候选方案以做出最佳决策。 #### 偏差、方差和噪声的概念解析 偏差度量了学习算法的期望预测实际结果之间的差距,反映了算法自身的拟合精度;方差描述的是相同规模训练集变化引起的学习效果波动情况,体现了数据扰动带来的影响;而噪声则设定了给定任务下所有可能采用的学习方法能达到的最佳预期泛化误差界限,揭示了问题本身固有的复杂性和挑战性[^2]。 #### 性能度量指标——P-R图及其应用 为了更直观地展示各类分类器的工作特性,通常会绘制精确率-召回率(Precision-Recall, P-R)曲线来辅助分析。当面对多组实验结果时,可以通过观察这些图形相互间的位置关系来进行优劣评判:如果某条曲线始终位于另一条之上,则表明前者具有更好的整体表现;而对于那些存在交点的情况,则需进一步计算各自下方区域面积大小作为判断依据之一。此外,“平衡点”作为一种特殊的性能测度,在特定条件下也能提供有价值的参考信息[^3]。 #### 偏差-方差分解理论简介 该理论为理解学习算法的一般化能力提供了框架性的指导思路,通过对平均测试错误率实施拆分操作,可以深入剖析导致过拟合现象背后的原因所在,并据此探索改进措施的方向。具体而言,总误差由三部分构成——不可约减误差点(即噪声)、平方形式表达出来的偏差项以及线性累加而成的方差成分[^4]。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.metrics import precision_recall_curve, auc def evaluate_model_performance(model, X, y): """ 计算并返回PR曲线下面积(AUC),用于量化模型的整体性能。 参数: model (object): 已经训练好的分类模型实例。 X (array-like of shape (n_samples, n_features)): 测试特征矩阵。 y (array-like of shape (n_samples,)): 对应的真实标签向量。 返回: float: PR AUC得分。 """ # 划分训练集/验证集 X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2) # 使用训练集拟合模型 model.fit(X_train, y_train) # 获取验证集中各观测对应的概率估计值 probas_pred = model.predict_proba(X_val)[:, 1] # 绘制PR曲线并求得AUC分数 precisions, recalls, _ = precision_recall_curve(y_val, probas_pred) pr_auc_score = auc(recalls, precisions) return pr_auc_score ```
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值