import torch
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2l
# 导入数据
batch_size, num_step = 32, 35
train_iter, vocab = d2l.load_data_time_machine(batch_size, num_step)
# 定义模型
num_hiddens = 256
rnn_layer = nn.RNN(len(vocab), num_hiddens)
state = torch.zeros((1, batch_size, num_hiddens))
# 隐藏层数,批量大小,隐藏单元数
# print(state.shape)
x = torch.rand(size=(num_step, batch_size, len(vocab)))
y, state_new = rnn_layer(x, state)
print(y.shape, state_new.shape)
# 定义循环神经网络的类,并增加输出层
class RNNModel(nn.Module):
'''循环神经网络'''
def __init__(self, rnn_layer, vocab_size):
super(RNNModel, self).__init__()
self.rnn = rnn_layer
self.vocab_size = vocab_size
self.num_hiddens = self.rnn.hidden_size
# 如果rnn为双向则,num_directions为2,否则为1
if not self.rnn.bidirectional:
self.num_directions = 1
self.linear = nn.Linear(self.num_hiddens, self.vocab_size)
else:
self.num_directions = 2
self.linear = nn.Linear(self.num_hiddens * 2, self.vocab_size)
def forward(self, inputs, state):
X = F.one_hot(inputs.T.long(), self.vocab_size)
X = X.to(torch.float32)
Y, state = self.rnn(X, state)
# 全连接层首先将Y的形状改为(时间步数*批量大小, 隐藏单元个数)
# 它的输出形状是(时间步数*批量大小, 词表大小)
output = self.linear(Y.reshape((-1, Y.shape[-1])))
return output, state
def begin_state(self, device, batch_size):
if not isinstance(self.rnn, nn.LSTM):
# nn.GRU以张量作为隐藏状态
return torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device)
else:
# nn.LSTM以元组作为隐藏状态
return (torch.zeros((
self.num_directions * self.rnn.num_layers,
batch_size, self.num_hiddens), device=device),
torch.zeros((self.num_directions * self.rnn.num_layers, batch_size, self.num_hiddens), device=device))
if __name__ == '__main__':
device = d2l.try_gpu()
net = RNNModel(rnn_layer, vocab_size=len(vocab))
net = net.to(device)
no_train = d2l.predict_ch8('my name is lixiang', 10, net, vocab, device)
print(no_train)
# 对网络进行训练
num_epoch, lr = 1000, 0.99
result = d2l.train_ch8(net, train_iter, vocab, lr, num_epoch, device)
print(result)
RNN初探
最新推荐文章于 2023-05-03 06:49:46 发布