Given two words word1 and word2, find the minimum number of steps required to convert word1 to word2. (each operation is counted as 1 step.)
You have the following 3 operations permitted on a word:
a) Insert a character
b) Delete a character
c) Replace a character
计算word1变换到Word2的距离,典型的动态规划,本来想直接递归做,但是超时。
public static int minDistance(String word1, String word2) {
if(word1==null && word2==null )
return 0;
if(word1 == null || word1.length()<1)return word2.length();
if(word2 == null || word2.length()<1)return word1.length();
if(word1.length()==1&&word2.length()==1){
if(word1.equals(word2))
return 0;
else return 1;
}
if(word1.equals(word2))return 0;
int row = word1.length();
int col = word2.length();
int [][]A = new int[row+1][col+1];
for(int i=0;i<=row;i++){
A[i][0]=i;
}
for(int i=0;i<=col;i++){
A[0][i]=i;
}
for(int i=1;i<=row;i++){
for(int j=1;j<=col;j++){
if(word1.charAt(i-1)==word2.charAt(j-1))
//当word1[i]==word2[j],直接就等于A[i-1][j-1]
A[i][j]=min(A[i-1][j]+1,A[i][j-1]+1,A[i-1][j-1]);
else
A[i][j]=min(A[i-1][j]+1,A[i][j-1]+1,A[i-1][j-1]+1);
}
}
return A[row][col];
}
public static int min(int i,int j,int k){
int z = (i<j?i:j);
return k<z?k:z;
}