http://acm.hdu.edu.cn/showproblem.php?pid=1521
指数型母函数
G(x) = ( 1 + x / 1! + (x^2)/(2!) + .....+ (x ^ n1 ) / (n1!) ) * (( 1 + x / 1! + (x^2)/(2!) + .....+ (x ^ n2 ) / (n2!)*.............*(( 1 + x / 1! + (x^2)/(2!) + .....+ (x ^ nk) / (nk!) )
求x^m的系数转换成temp / ( m ! ) ;
然后求解时,temp * (m! ) 就是x ^ m的系数
#include<map>
#include<set>
#include<list>
#include<cmath>
#include<ctime>
#include<deque>
#include<stack>
#include<bitset>
#include<cstdio>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iomanip>
#include<numeric>
#include<sstream>
#include<utility>
#include<iostream>
#include<algorithm>
#include<functional>
using namespace std ;
double fac[ ] = { 1 , 1 , 2 , 6 , 24 , 120 , 720 , 5040 , 40320 , 362880 , 3628800 , 39916800 } ;
int main()
{
int n , m ;
double a[ 11 ] , b[ 11 ] , num1[ 11 ], num2[ 11 ];
while( scanf( "%d%d" , &n , &m ) != EOF )
{
for( int i = 0 ; i < n ; ++i )
{
scanf( "%lf" , &a[ i ] ) ;
}
for( int i = 0 ; i <= m ; ++i )
num1[ i ] = num2[ i ] = 0.0 ;
for( int i = 0 ; i <= a[ 0 ] ; ++i )
{
num1[ i ] = 1.0 / fac[ i ] ;
}
for( int i = 1 ; i < n ; ++i )
{
for( int j = 0 ; j <= m ; ++j )
{
for( int k = 0 ; k <= a[ i ] && k + j <= m ; ++k )
{
num2[ k + j ] += ( num1[ j ] / fac[ k ] ) ;
}
}
for( int j = 0 ; j <= m ; ++j )
{
num1[ j ] = num2[ j ] ;
num2[ j ] = 0 ;
}
}
printf( "%.lf\n" , num1[ m ] * fac[ m ] ) ;
}
return 0;
}