codeforces1025D Recovering BST

本文介绍了一种优化的动态规划(DP)算法来解决特定的子树问题。通过减少不必要的状态记录,将复杂度从接近n^4降低到n^3。文章详细展示了如何避免重复枚举根节点,并通过代码实现验证了方法的有效性。

朴素的DP想FA是,确定一段区间l到r,根节点为u,能否构成一棵子树,但这样区间有n^3个状态,然后由于要枚举根节点,导致不必要的浪费,趋近n^4的枚举,而且这个700^3 1s时限,必超时,然后我们枚举区间的根节点的时候,是要判断枚举左边区间的根节点和右边区间的根节点链接当前区间枚举出的根节点,其实没必要枚举这么多,直接每一段l,r区间能否以l-1或r+1为根节点的父节点,其实和原本的DP也是等价的,不过是减少了状态记录量,却优化掉了DP数组的一维,复杂度也减到n^3,注意因为1-n的区间是无所谓的,一定要把每个点都跟0号和n+1号点gcd标记为大于1,那么只要f[1][n][0]或f[1][n][1]能够为true就星

#include<cstdio>
#include<cstring>
#define maxl 710

int n;
bool flag;
int a[maxl];
bool f[maxl][maxl][2],to[maxl][maxl];

inline int gcd(int a,int b)
{
	if(b==0)
		return a;
	return gcd(b,a%b);
}

int main()
{
	scanf("%d",&n);
	for(int i=1;i<=n;i++)
		scanf("%d",&a[i]);
	for(int i=1;i<=n;i++)
		for(int j=i+1;j<=n;j++)
		if(gcd(a[i],a[j])>1)
			to[i][j]=true,to[j][i]=true;	
	
	for(int i=1;i<=n;i++)
	{
		to[0][i]=true;to[i][0]=true;
		to[i][n+1]=true;to[n+1][i]=true;
		if(to[i][i-1]) 
			f[i][i][0]=true;
		if(to[i][i+1]) 
			f[i][i][1]=true;
	}
	int j;
	for(int len=1;len<n;len++)
		for(int i=1;i+len<=n;i++)
		{
			j=i+len;
			for(int k=i;k<=j;k++)
			if((i==k || f[i][k-1][1]) && (j==k || f[k+1][j][0]))
			{	
				if(to[i-1][k])
					f[i][j][0]=true;
				if(to[j+1][k])
					f[i][j][1]=true;
			}
		}
	if(f[1][n][0] || f[1][n][1])
		printf("Yes");
	else
		printf("No");
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值