【OpenCV】87 视频分析—基于帧差法实现移动对象分析

本文介绍了一种基于帧差法的移动对象检测方法,利用OpenCV库在Python环境中实现。通过对连续帧进行高斯模糊和差分运算,再经过阈值处理和形态学操作,有效提取并显示移动目标。

87 视频分析—基于帧差法实现移动对象分析

代码

import numpy as np
import cv2 as cv

cap = cv.VideoCapture("../images/bike.avi")
ret, prevFrame = cap.read()
prevGray = cv.cvtColor(prevFrame, cv.COLOR_BGR2GRAY)
prevGray = cv.GaussianBlur(prevGray, (0, 0), 15)
k = cv.getStructuringElement(cv.MORPH_RECT, (7, 7))
while True:
    ret, frame = cap.read()
    if ret is False:
        break
    gray = cv.cvtColor(frame, cv.COLOR_BGR2GRAY)
    gray = cv.GaussianBlur(gray, (0, 0), 15)
    diff = cv.subtract(gray, prevGray)
    t, binary = cv.threshold(diff, 0, 255, cv.THRESH_BINARY | cv.THRESH_OTSU)
    binary = cv.morphologyEx(binary, cv.MORPH_OPEN, k)
    cv.imshow('input', frame)
    cv.imshow('result', binary)
    c = cv.waitKey(50)&0xff
    prevGray = np.copy(gray)
    if c == 27:
        break
cap.release()
cv.destroyAllWindows()

实验结果

在这里插入图片描述

解释

光流跟踪与背景消除都是基于建模方式的视频分析方法,其实这类方法最原始的一个例子就是对视频移动对象的帧差法跟踪,这个在视频分析与处理中也是一种很常见的手段,有时候会取得意想不到的好效果,帧差法进一步划分有可以分为

  • 两帧差
  • 三帧差
    假设有当前帧frame, 前一帧prev1,更前一帧prev2
    两帧差方法直接使用前一帧 减去当前帧 diff = frame – prev1
    三帧差方法计算如下:
    diff1 = prev2 – prev1
    diff2 = frame – prev1
    diff = diff1 & diff2
    帧差法在求取帧差之前一般会进行高斯模糊,用以减低干扰,通过得到的diff图像进行形态学操作,用以合并与候选区域,提升效率。帧差法的缺点有如下:
  1. 高斯模糊是高耗时计算
  2. 容易受到噪声与光线干扰

所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值