【OpenCV】30 OpenCV自定义的滤波器

OpenCV自定义滤波器实践
本文通过Python代码展示了如何使用OpenCV自定义卷积核实现图像模糊、锐化和梯度边缘检测。介绍了blur_op、shape_op和grad_op三种自定义卷积核的应用,并解释了cv.filter2D函数的参数意义。

30 OpenCV自定义的滤波器

代码

import cv2 as cv
import numpy as np

src = cv.imread("../images/test.png")
cv.namedWindow("input", cv.WINDOW_AUTOSIZE)
cv.imshow("input", src)

blur_op = np.ones([5, 5], dtype=np.float32)/25.
shape_op = np.array([[0, -1, 0],
                   [-1, 5, -1],
                   [0, -1, 0]], np.float32)
grad_op = np.array([[1, 0],[0, -1]], dtype=np.float32)

dst1 = cv.filter2D(src, -1, blur_op)
dst2 = cv.filter2D(src, -1, shape_op)
dst3 = cv.filter2D(src, cv.CV_32F, grad_op)
dst3 = cv.convertScaleAbs(dst3)

cv.imshow("blur=5x5", dst1);
cv.imshow("shape=3x3", dst2);
cv.imshow("gradient=2x2", dst3);

cv.waitKey(0)
cv.destroyAllWindows()

实验结果

在这里插入图片描述
在这里插入图片描述

解释

图像卷积最主要功能有图像模糊、锐化、梯度边缘等,前面已经分享图像卷积模糊的相关知识点,OpenCV除了支持上述的卷积模糊(均值与边缘保留)还支持自定义卷积核,实现自定义的滤波操作。自定义卷积核常见的主要是均值、锐化、梯度等算子。代码中的blur_opshape_opgrad_op就分别实现了均值、锐化和梯度等自定义卷积核。

cv.filter2D(src, ddepth, kernel[, dst[, anchor[, delta[, borderType]]]] )

  • int ddepth, // 默认-1,表示输入与输出图像类型一致,但是当涉及浮点数计算时候,需要设置为CV_32F。滤波完成之后需要使用convertScaleAbs函数将结果转换为字节类型。

所有内容均来源于贾志刚老师的知识星球——OpenCV研习社,本文为个人整理学习,已获得贾老师授权,有兴趣、有能力的可以加入贾老师的知识星球进行深入学习。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值