蒙特卡罗类型概率算法

本文介绍了一种利用蒙特卡罗方法来估算圆周率π的算法。通过在边长为2的正方形内投掷飞镖模拟随机点,统计落在半径为1的内切圆内的飞镖数量,进而估算π的值。通过增加投掷次数提高估算精度,程序展示了如何在C++中实现这一算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蒙特卡罗类型概率算法

蒙特卡罗算法:用蒙特卡罗算法能够求得问题的一个解,但是这个解未必是正确的。求得正确解的概率依赖于算法所用的时间。算法所用的时间越多,得到正确解的概率就越高。蒙特卡罗算法的主要缺点就在于此。一般情况下,无法有效判断得到的解是否肯定正确。其特点是判定问题的准确解,得到的解不一定正确。

【问题】设计一个求\Pi(圆周率)的蒙特卡罗型概率算法。

【解答】在边长为2的正方形内有一半径为1的内切圆,如图所示。向该正方形中投掷n次飞镖,假设飞镖击中正方形中任何位置的概率相同,设飞镖的位置为(x,y),如果有x^{2}+y^{2}\leq1,则飞镖落在内切圆中。

       这里内切圆面积为\Pi,正方形面积为4,内切圆面积与正方形面积比为\Pi/4。若n次投掷中有m次落在内切圆中,则内切圆面积与正方形面积之比可近似为m/n,即\Pi/4\approxm/n,或者\Pi\approx4m/n。

      由于图中每个象限的概率相同,这里以右上角象限进行模拟。采用蒙特卡罗型概率算法求\Pi得程序如下:

#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
using namespace std;

int randa(int a,int b) {
	return rand() % (b - a + 1) + a;
}
double rand01() {    //产生一个[0,1]的随机数
	return randa(0, 100)*1.0 / 100;
}

double solve() {   //求π的蒙特卡罗算法
	int n = 10000;
	int m = 0;
	double x, y;
	for (int i = 0; i < n;i++) {
		x = rand01();
		y = rand01();
		if (x*x+y*y<=1.0) {
			m++;
		}
	}
	return 4.0*m / n;

}

void main() {
	srand((unsigned)time(NULL));//随机种子
	cout <<"π="<<solve()<< endl;

	system("pause");
}

选择出现频率出现最高的即可。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值