AL-MDN

### 使用 LSTM 和 MDN 实现回归预测 混合密度网络(Mixture Density Network, MDN)是一种用于建模复杂分布的方法,它通过组合多个高斯分布来表示目标变量的概率分布。当与循环神经网络(Recurrent Neural Networks, RNNs),特别是长短期记忆网络(Long Short-Term Memory, LSTM)结合时,可以有效地处理时间序列数据并生成复杂的概率分布。 以下是基于 TensorFlow/Keras 的实现示例: #### 数据准备 为了训练模型,通常需要将输入数据转换为适合 LSTM 处理的时间步格式。假设我们有一个时间序列数据集 `X` 和对应的标签 `Y`。 ```python import numpy as np from tensorflow.keras.preprocessing.sequence import TimeseriesGenerator def create_dataset(data, look_back=10): generator = TimeseriesGenerator(data, data[:, -1], length=look_back, batch_size=32) X, y = [], [] for i in range(len(generator)): xi, yi = generator[i] X.append(xi) y.append(yi) return np.vstack(X), np.hstack(y) # 假设 data 是一个形状为 (n_samples, n_features) 的 NumPy 数组 X_train, y_train = create_dataset(data[:train_split]) X_test, y_test = create_dataset(data[train_split:]) ``` #### 构建 LSTM-MDN 模型 下面是一个简单的 LSTM-MDN 结构定义。MDN 部分由多个高斯分布组成,每个高斯分布有均值、标准差和权重参数。 ```python import tensorflow as tf from tensorflow.keras.models import Model from tensorflow.keras.layers import Input, LSTM, Dense class MixtureDensityNetwork(tf.keras.Model): def __init__(self, num_components, input_dim, output_dim): super(MixtureDensityNetwork, self).__init__() self.num_components = num_components self.input_layer = Input(shape=(None, input_dim)) self.lstm_layer = LSTM(64, return_sequences=False) self.pi_layer = Dense(num_components, activation='softmax') # Mixing coefficients self.mu_layer = Dense(num_components * output_dim) # Means self.sigma_layer = Dense(num_components * output_dim, activation='softplus') # Standard deviations def call(self, inputs): x = self.lstm_layer(inputs) pi = self.pi_layer(x) mu = self.mu_layer(x) sigma = self.sigma_layer(x) return pi, mu, sigma num_components = 5 input_dim = X_train.shape[-1] output_dim = 1 model = MixtureDensityNetwork(num_components=num_components, input_dim=input_dim, output_dim=output_dim) pi, mu, sigma = model(model.input_layer) ``` #### 定义损失函数 MDN 的核心在于其自定义的负对数似然损失函数,这使得它可以拟合任意形式的目标分布。 ```python def mdn_loss(pi, mu, sigma, y_true): dist = tfp.distributions.MixtureSameFamily( mixture_distribution=tfp.distributions.Categorical(probs=pi), components_distribution=tfp.distributions.Normal(loc=mu, scale=sigma) ) log_likelihood = dist.log_prob(tf.reshape(y_true, (-1,))) loss = -tf.reduce_mean(log_likelihood) return loss loss_fn = lambda y_true: mdn_loss(pi, mu, sigma, y_true) optimizer = tf.keras.optimizers.Adam() @tf.function def train_step(x, y): with tf.GradientTape() as tape: _, mu_pred, sigma_pred = model(x) loss_value = loss_fn(y) gradients = tape.gradient(loss_value, model.trainable_variables) optimizer.apply_gradients(zip(gradients, model.trainable_variables)) return loss_value ``` #### 训练过程 使用上述定义好的模型和损失函数进行训练。 ```python epochs = 100 batch_size = 32 for epoch in range(epochs): total_loss = 0.0 steps_per_epoch = len(X_train) // batch_size dataset = tf.data.Dataset.from_tensor_slices((X_train, y_train)).shuffle(buffer_size=1024).batch(batch_size) for step, (x_batch_train, y_batch_train) in enumerate(dataset): loss_value = train_step(x_batch_train, y_batch_train) total_loss += loss_value avg_loss = total_loss / steps_per_epoch print(f"Epoch {epoch+1}, Loss: {avg_loss.numpy():.4f}") ``` #### PyTorch 版本 如果更倾向于使用 PyTorch,则可以通过类似的逻辑构建模型。 ```python import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions.normal import Normal from torch.distributions.categorical import Categorical from torch.distributions.mixture_same_family import MixtureSameFamily class LSTMMDN(nn.Module): def __init__(self, input_dim, hidden_dim, num_layers, num_components): super(LSTMMDN, self).__init__() self.lstm = nn.LSTM(input_dim, hidden_dim, num_layers, batch_first=True) self.pi_fc = nn.Linear(hidden_dim, num_components) self.mu_fc = nn.Linear(hidden_dim, num_components) self.sigma_fc = nn.Linear(hidden_dim, num_components) def forward(self, x): lstm_out, _ = self.lstm(x) out = lstm_out[:, -1, :] # 取最后一个时间步的输出 pi = F.softmax(self.pi_fc(out), dim=-1) mu = self.mu_fc(out) sigma = F.softplus(self.sigma_fc(out)) + 1e-8 return pi, mu, sigma def mdn_loss(pi, mu, sigma, y_true): mix = Categorical(pi) comp = Normal(mu.unsqueeze(-1), sigma.unsqueeze(-1)) gmm = MixtureSameFamily(mix, comp) return -gmm.log_prob(y_true).mean() ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值