蓝桥杯——圆的面积——python实现

该博客介绍了一种使用Python计算圆面积的方法,通过引入Decimal模块以确保高精度。题目要求给定半径r,输出四舍五入保留7位小数的圆面积。示例代码展示了如何读取半径,计算并打印结果。注意对于Python,可能需要处理精度问题,但可以通过导入Decimal包解决。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

蓝桥杯——圆的面积

一、问题描述

资源限制
内存限制:256.0MB C/C++时间限制:1.0s Java时间限制:3.0s Python时间限制:5.0s

问题描述
给定圆的半径r,求圆的面积。

输出格式
输出一行,包含一个实数,四舍五入保留小数点后7位,表示圆的面积。

说明:在本题中,输入是一个整数,但是输出是一个实数。对于实数输出的问题,请一定看清楚实数输出的要求,比如本题中要求保留小数点后7位,则你的程序必须严格的输出7位小数,输出过多或者过少的小数位数都是不行的,都会被认为错误。实数输出的问题如果没有特别说明,舍入都是按四舍五入进行。

样例输入
4

样例输出
50.2654825

数据规模与约定
1 <= r <= 10000。

提示
本题对精度要求较高,请注意π的值应该取较精确的值。你可以使用常量来表示π,比如PI=3.14159265358979323,也可以使用数学公式来求π,比如PI=atan(1.0)*4。

对于本题,如果用python的话会有点精度上的小问题,C或C++比较容易,但python也不难,导入一个Decimal包就解决了

二、实现代码

from decimal import Decimal
PI = 3.14159265358979323
r = int(input())
s = PI * r ** 2
print(round(Decimal(s),7))
### 关于蓝桥杯 Python 中跳跃类题目及其解法 #### 题目背景与分析 蓝桥杯竞赛中的跳跃类题目通常涉及数组操作、动态规划 (Dynamic Programming, DP) 或贪心算法。这类问题的核心在于如何合理设计状态以及优化计算过程[^2]。 对于跳跃类问题,常见的场景包括: - **单向跳跃**:给定一系列位置和每一步可跳的最大步数,判断能否到达终点。 - **多方向跳跃**:允许向前或向后跳跃一定距离,最小跳跃次数或其他目标函数值。 以下是针对此类问题的一个通用解决方案框架: --- #### 动态规划解决跳跃问题的思路 动态规划是一种常用的策略来处理跳跃类问题。其核心思想是定义一个 `dp` 数组,其中每个元素表示达到该位置所需的最少跳跃次数或某种最优条件下的代价。 假设我们有一个长度为 `n` 的数组 `arr` 表示各个位置的状态,则可以按照如下方式构建动态规划方程: ```python def min_jumps(arr): n = len(arr) dp = [float('inf')] * n # 初始化 dp 数组为无穷大 dp[0] = 0 # 初始位置不需要跳跃 for i in range(1, n): # 遍历每一个位置 for j in range(i): # 尝试从前一个位置跳到当前位置 if j + arr[j] >= i and dp[j] != float('inf'): # 如果可以从 j 跳到 i dp[i] = min(dp[i], dp[j] + 1) # 更新当前最少跳跃次数 return dp[-1] if dp[-1] != float('inf') else -1 # 返回最后一个位置的结果 ``` 上述代码实现了基于动态规划的最小跳跃次数问题解答方法。 --- #### 使用贪心算法优化跳跃问题 除了动态规划外,某些特定条件下还可以采用更高效的贪心算法解决问题。例如,在“跳跃游戏”中只需要验证是否存在一种路径能够抵达终点即可,而无需关心具体的跳跃次数。 下面是一个典型的贪心算法实现例子: ```python def can_jump_greedy(arr): max_reach = 0 # 当前能到达的最远索引 for i, jump in enumerate(arr): if i > max_reach: # 若当前位置无法被覆盖则返回 False return False max_reach = max(max_reach, i + jump) # 更新最大可达范围 return True # 如果循环结束说明可以到达最后一位 ``` 此段代码利用了局部最优原则——即每次尽可能扩展所能触及的距离,从而保证整体效率最高。 --- #### 总结 无论是通过动态规划还是贪心算法解决跳跃类问题,都需要仔细考虑边界情况并选择合适的数据结构存储中间结果。此外,实际编程过程中还应注意时间复杂度控制以应对大规模数据集带来的挑战。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

微风与她

你的鼓励会让我更加努力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值