tensorboard同时显示训练数据和测试数据的曲线

本文详细介绍如何在TensorBoard中实现训练集与测试集损失函数的双曲线对比,通过具体代码示例展示如何生成并同时运行多个事件,以便在图表中清晰地观察模型在训练过程中的表现差异。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学着用tensorboard在一个模型里面有训练模型和测试模型的损失函数曲线对比,上网找了好多,但是还都是一个曲线,即自己画的是这样的

但是想要的是这样的:

到底应该怎么样呢?

简单操作:

tensorboard --logdir=run1:"/home/.../summary",run2:"/home/.../summary" 
其实只要在终端同时运行几个events即可,events就是summary生成的那个东西,

然后注意了,还有个骚操作:

注意,左上角的ignore outliers in chart scaling 没点时是上图,如果点了,就是下面的图了

最后附上我的代码,可以自己耍一下。

# -*- coding: utf-8 -*-
"""
Created on Tue May 29 09:17:55 2018
@author: 618
"""
 
import tensorflow as tf
import numpy as np
 
trX = np.linspace(-1, 1, 100)
trY = trX + np.random.randn(*trX.shape)*0.33
 
teX = np.linspace(2, 3, 100)
teY = teX
 
X = tf.placeholder(tf.float32, [100,], name="input_x")
Y = tf.placeholder(tf.float32, [100,], name="output_y")
X1 = tf.placeholder(tf.float32, [100,], name="input_x1")
Y1 = tf.placeholder(tf.float32, [100,], name="output_y1")
 
def model(X, w):
    return tf.multiply(X, w)
 
w = tf.Variable(0.1, name='weights')
 
with tf.name_scope("cost"):
    y_model = model(X, w)
    cost = tf.reduce_mean(tf.square(Y - y_model))
tf.summary.scalar('loss', cost)
 
with tf.name_scope("train"):
    train_op = tf.train.AdamOptimizer(0.01).minimize(cost)
 
with tf.name_scope("test_cost"):
    y_model = model(X, w)
    test_cost = tf.reduce_mean(tf.square(Y - y_model))
tf.summary.scalar('test_loss', test_cost)
 
merged = tf.summary.merge_all()
with tf.Session() as sess:
    tf.global_variables_initializer().run()
    summary_writer = tf.summary.FileWriter('./log/train', sess.graph)
    summary_writer1 = tf.summary.FileWriter('./log/test')
    for i in range(1000):
        feed_dict = {}
        if i % 100 == 0:
            print(sess.run(cost, feed_dict={X: trX, Y: trY}))
            print(sess.run(test_cost, feed_dict={X: teX, Y: teY}))
            summary, _ = sess.run([merged, test_cost], feed_dict={X: teX, Y: teY})
            summary_writer1.add_summary(summary, i)
        else:
            summary, _ =sess.run([merged, train_op], feed_dict={X: trX, Y: trY})
            summary_writer.add_summary(summary,i)
    print(sess.run(w))
    summary_writer.close()
    summary_writer1.close()
 


 
 
 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值