# coding: utf-8
# In[2]:
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# In[3]:
# 载入数据集
mnist = input_data.read_data_sets("MNIST_data", one_hot=True)
# 每个批次的大小
batch_size = 100
# 计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size
#参数概要
def variable_summaries(var):
with tf.name_scope('summaries'):
mean=tf.reduce_mean(var)
tf.summary.scalar('mean',mean)
with tf.name_scope('stddev'):
stddev=tf.sqrt(tf.reduce_mean(tf.square(var-mean)))
tf.summary.scalar('stddev',stddev)#标准差
tf.summary.scalar('max', tf.reduce_max(var))
tf.summary.scalar('min',tf.reduce_min(var))#最小值
tf.summary.histogram('histogram',var)#直方图
#定义一个命名空间
with tf.name_scope('input'):
x = tf.placeholder(tf.float32, [None, 784],name='x_input')
y = tf.
python学习笔记之tensorboard绘制结构曲线分析各参数
最新推荐文章于 2025-03-26 16:10:20 发布