构造哈夫曼树

本文详细介绍了哈夫曼树的构建过程,通过实例演示了如何选择最小值和次小值进行节点连接,构建一棵有效的哈夫曼树。同时,文章指出了当前算法在寻找最小值和次小值时存在的效率问题,并表达了对未来改进算法的期待。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

缺点:在找最小值和次小次时,会比已经匹配过的点再重新比较一次,有点浪费。 以后算法学好了再回来看看有什么可以更好的实现方法吧

#include "stdafx.h"
#define N 10					//结点个数
#define MAXVALUE 1000000		//作比较用
typedef struct {
	int weight;			//权值
	int parent;
	int lchild;
	int rchild;
}HaffmanType;

int main()
{
	HaffmanType hfmanTree[2*N-1]; //因为要多一个结点来连接其它结点
	for (int i = 0; i <2 * N - 1; i++)
	{
		hfmanTree[i].weight = -1;
		hfmanTree[i].parent = -1;
		hfmanTree[i].lchild = -1;
		hfmanTree[i].rchild = -1;
	}
	hfmanTree[0].weight = 2;
	hfmanTree[2].weight = 5;
	hfmanTree[1].weight = 3;
	hfmanTree[3].weight = 1;
	hfmanTree[5].weight = 8;
	hfmanTree[7].weight = 2;
	hfmanTree[8].weight = 12;
	hfmanTree[9].weight = 52;
	hfmanTree[10].weight = 10;
	hfmanTree[11].weight = 9;
	int x1, x2,m1,m2;		//x1是用来选最小值,x2用来选次小值,m1用来保留最小值的下标,m2用来保留次小值下标
	for (int i = 0; i < N-1; i++)
	{
		x1 = x2 = MAXVALUE;
		m1 = m2 = 0;

		for (int j = 0; j < N+i; j++)
		{
			if (hfmanTree[j].parent==-1&&hfmanTree[j].weight<x1)
			{
				x2 = x1;
				m2 = m1;
				x1 = hfmanTree[j].weight;
				m1 = j;
			}
			else if(hfmanTree[j].parent == -1 && hfmanTree[j].weight<x2)
			{
				x2 = hfmanTree[i].weight;
				m2 = j;
			}
		}
		hfmanTree[m1].parent = N + i;
		hfmanTree[m2].parent = N + i;
		hfmanTree[N + i].weight = hfmanTree[m1].weight + hfmanTree[m2].weight;
		hfmanTree[N + i].lchild = m1;
		hfmanTree[N + i].rchild = m2;

	}

    return 0;
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值