【一、安装cuda】
nvidia-smi查看显卡支持最高的cuda版本
根据torch和cuda对应版本做出选择,
这里torch==1.7.1,则选择cudatoolkit=11.0.3
https://developer.nvidia.com/cuda-toolkit-archive
https://pytorch.org/get-started/previous-versions/
安装cudatoolkit=11.0.3
https://developer.nvidia.com/cuda-11-0-3-download-archive
export PATH=/usr/local/cuda/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH
conda install pytorch==1.7.1 torchvision==0.8.2 torchaudio==0.7.2 cudatoolkit=11.0 -c pytorch
或者
pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
【二、安装conda和python依赖】
下载和安装miniconda:https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
执行 vim ~/.condarc 加入下面得内容,即可使用。
channels:
- defaults
show_channel_urls: true
default_channels:
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r
- https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/msys2
custom_channels:
conda-forge: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
msys2: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
bioconda: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
menpo: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
pytorch-lts: https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud
安装依赖[使用以下的依赖文件,原project的依赖有问题]
https://github.com/thuml/Time-Series-Library/blob/main/requirements.txt
pip3 install -i https://mirrors.tuna.tsinghua.edu.cn/pypi/web/simple --trusted-host mirrors.tuna.tsinghua.edu.cn -r requirements.txt
【三、模型训练、推理】
执行脚本:scripts\long_term_forecast