TPU-MLIR编译部署算法

本文详细介绍了如何在基于x86架构的开发环境中配置环境,使用Docker容器,转换和量化PP-OCR文字识别模型,包括从PaddlePaddle模型转为ONNX,再通过MLIR转换为F32和INT8量化模型,最后目标是部署到基于ARM架构的SOPHGOSE5微服务器上进行推理测试。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注意: 由于SOPHGO SE5微服务器的CPU是基于ARM架构,以下步骤将在基于x86架构CPU的开发环境中完成

  • 初始化开发环境(基于x86架构CPU的开发环境中完成)
  • 模型转换 (基于x86架构CPU的开发环境中完成)

处理后的PP-OCR项目文件将被拷贝至 SE5微服务器 上进行推理测试

开发环境配置

【x86架构CPU的开发环境】

  • Linux开发环境
    1. 一台安装了Ubuntu16.04/18.04/20.04的x86主机,运行内存建议12GB以上
    2. 下载SophonSDK开发包(v23.03.01)
      在这里插入图片描述
(1)解压缩SDK包
sudo apt-get install p7zip
sudo apt-get install p7zip-full
7z x Release_<date>-public.zip
cd Release_<date>-public
(2)Docker 安装–TPU-MLIR环境初始化
# 安装docker
sudo apt-get install docker.io
# docker命令免root权限执行
# 创建docker用户组,若已有docker组会报错,没关系可忽略
sudo groupadd docker
# 将当前用户加入docker组
sudo gpasswd -a ${USER} docker
# 重启docker服务
sudo service docker restart
# 切换当前会话到新group或重新登录重启X会话
newgrp docker
提示:需要logout系统然后重新登录,再使用docker就不需要sudo了。
(3)创建docker容器并进入Docker
docker run -v $PWD/:/workspace -p 8001:8001 -it sophgo/tpuc_dev:latest

在这里插入图片描述

(4)加载tpu-mlir–激活环境变量

以下操作需要在Docker容器中。关于Docker的使用, 请参考 启动Docker Container

$ tar zxf tpu-mlir_xxxx.tar.gz
$ source tpu-mlir_xxxx/envsetup.sh

_xxxx表示的时tpu-mlir的版本号

本文是在SOPHGO PCIE 1684X/1684云平台上实现

**注意:**如果是在SOPHGO提供的1684X/1684 PCIE云平台上,则无需创建和进入docker,直接加载tpu-mlir并激活环境变量即可。如下命令直接source:

cd tpu-mlir_xxxx/
source tpu-mlir_xxxx-xxxx/envsetup.sh

在这里插入图片描述

实现PP-OCR的文字识别算法模型的转换和量化

1、模型转换

【x86架构CPU的开发环境】

(1)下载SOPHON示例仓库-PP-OCR算法移植代码:
git clone https://github.com/sophon-ai-algo/examples.git
# PP-OCR示例项目代码位置 /examples/simple/PP-OCRv2
(2)将checkpoints模型 转换为 inference模型

PaddlePaddle 支持导出 inference 模型用于部署推理场景,相比于训练调优场景,inference 模型会将网络权重与网络结构进行持久化存储,并且
PaddlePaddle 支持使用预测引擎加载 inference 模型进行预测推理。
参考:https://gitee.com/paddlepaddle/PaddleClas/blob/release/2.3/docs/zh_CN/inference_deployment/export_model.md
超轻量PP-OCRv2系列包含三个模型:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
可以直接通过运行SOPHON示例项目中的脚本下载转换好的inference模型:

通过脚本下载需要的数据和模型:

# 进入项目
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值