听劝❗用AI做职场思维导图仅仅需要几秒钟啊

本文由 ChatMoney团队出品

嘿,各位职场朋友们

是不是常常对着密密麻麻的笔记感到焦虑呢?

想整理却无从下手?

别怕,ChatmoneyAI知识库来拯救你的整理困难症啦!

咱们都知道,思维导图是职场中必备的神器

它能帮我们理清思路,记忆知识

但传统做法嘛,不是画得乱七八糟就是费时费力,真心不方便

于是ChatmoneyAI知识库的思维导图功能就咻咻出现啦!

更重要的是,ChatmoneyAI懂你的难,知道做思维导图的不易

所以,它用智能化、个性化的设计,帮你轻松搞定这一切

无论是知识点的梳理,还是思路的整理,它都能帮你做到最好,就跟人正常交流一样,AI很懂你

所以呀,别再为做思维导图烦恼了

ChatmoneyAI就是你的职场必备小助手,让你职场之路更加顺畅,更加高效!

关于我们

本文由ChatMoney团队出品,ChatMoney专注于AI应用落地与变现,我们提供全套、持续更新的AI源码系统与可执行的变现方案,致力于帮助更多人利用AI来变现,欢迎进入ChatMoney获取更多AI变现方案!

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值