torch.gather()和torch.index_select说明

本文详细解析了PyTorch中的gather与index_select函数的使用方法及应用场景,通过实例展示了如何根据索引查找并操作张量元素,适用于多分类问题中从one-hot输出提取最大值坐标。
部署运行你感兴趣的模型镜像
b = torch.Tensor([[1,2,3],[4,5,6]])
print b
index_1 = torch.LongTensor([[0,1],[2,0]])
index_2 = torch.LongTensor([[0,1,1],[0,0,0]])
print torch.gather(b, dim=1, index=index_1)
print torch.gather(b, dim=0, index=index_2)

 

观察它的输出结果:


 1  2  3
 4  5  6
[torch.FloatTensor of size 2x3]


 1  2
 6  4
[torch.FloatTensor of size 2x2]


 1  5  6
 1  2  3
[torch.FloatTensor of size 2x3]


可以看出,gather的作用是这样的,index实际上是索引,具体是行还是列的索引要看前面dim 的指定,比如对于我们的栗子,【1,2,3;4,5,6,】,指定dim=1,也就是横向,那么索引就是列号。index的大小就是输出的大小,所以比如index是【1,0;0,0】,那么看index第一行,1列指的是2, 0列指的是1,同理,第二行为4,4 。这样就输入为【2,1;4,4】,参考这样的解释看上面的输出结果,即可理解gather的含义。

gather在one-hot为输出的多分类问题中,可以把最大值坐标作为index传进去,然后提取到每一行的正确预测结果,这也是gather可能的一个作用。

torch.index_select

>>> x = torch.randn(3, 4)
>>> x

 1.2045  2.4084  0.4001  1.1372
 0.5596  1.5677  0.6219 -0.7954
 1.3635 -1.2313 -0.5414 -1.8478
[torch.FloatTensor of size 3x4]

>>> indices = torch.LongTensor([0, 2])
>>> torch.index_select(x, 0, indices)

 1.2045  2.4084  0.4001  1.1372
 1.3635 -1.2313 -0.5414 -1.8478
[torch.FloatTensor of size 2x4]

>>> torch.index_select(x, 1, indices)

 1.2045  0.4001
 0.5596  0.6219
 1.3635 -0.5414
[torch.FloatTensor of size 3x2]

torch.gather()根据索引查找元素(单个元素),再聚合;torch.index_select根据索引切片(有可能单个元素或向量)

您可能感兴趣的与本文相关的镜像

PyTorch 2.5

PyTorch 2.5

PyTorch
Cuda

PyTorch 是一个开源的 Python 机器学习库,基于 Torch 库,底层由 C++ 实现,应用于人工智能领域,如计算机视觉和自然语言处理

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值