可解释的机器学习-XAI – eXplainable Artificial Intelligence

Part1:可解释的机器学习-XAI – eXplainable Artificial Intelligence

[DALEX]。它为预测模型的不同方面提供了大量的可视化解释。在构建机器学习时候非常有用。目前还没有过多应用于医学领域;在这篇文章中,我们将在R中实现可解释人工智能的算法。在这里可以找到对全局和局部模型评估方法的介绍。

image.png

本文主要介绍:

  1. 为什么要使用XAI
  2. 代码实现

1.为什么要使用XAI

目前,人工智能算法非常流行,通过快速调用机器学习包,完成模型预测目的,这些复杂的算法,也称之为黑盒模型。由于机器学习算法的灵活性与复杂性,它们通常可发现变量之间的复杂关系,学习出特定规律,让预测变得更加准确。因此,在达到精确预测的同时,机器学习模型也损失了对现实的课解释性。

当我们选择复杂而又有弹性的模型时,往往需要了解模型中哪些变量做了决策,目前已有人正在开发相关算法和工具来我们

评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

辣椒种子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值