人工智能基础_机器学习046_OVR模型多分类器的使用_逻辑回归OVR建模与概率预测---人工智能工作笔记0086

本文介绍了OVR(One-vs-Rest)策略用于将多分类问题转换为二分类问题,特别是在逻辑回归中的应用。通过Python的sklearn库展示了如何使用LogisticRegression进行OVR分类,并用鸢尾花数据集进行训练和测试,计算了模型的准确率,并进行了概率预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

首先我们来看一下什么是OVR分类.我们知道sigmoid函数可以用来进行二分类,那么多分类怎么实现呢?其中一个方法就是使用OVR进行把多分类转换成二分类进行计算.

OVR,全称One-vs-Rest,是一种将多分类问题转化为多个二分类子问题的策略。在这种策略中,多分类问题被分解为若干个二分类问题。例如,如果有K个类别需要分类,则会有K个二分类器,每个分类器只负责判断某一个类别与其他所有类别的区别。这种方法常用于逻辑回归等算法解决多分类问题。

OvR是一种二分类策略,即一对剩余(One Vs Rest)。当要对n种类别的样本进行分类时,分别取一种样本作为一类,将剩余的所有类型的样本看做另一类,这样就形成了n个二分类问题。在训练阶段,需要将数据集划分为n个二分类数据集,分别训练二分类分类器。在测试阶段,对测试样本进行n个二分类任务,每个任务对应一个分类器,计算对应类别的概率值,最后选择概率值最大的类别作为最终测试样本的类别。

我们看一下如何用代码实现
import numpy as np 导入数学计算包

from sklearn.linear_model import LogisticRegression 导入逻辑回归

from sklearn import datasets 导入数据集

from sklearn. model selection import train_test_

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

添柴程序猿

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值