1135 Is It A Red-Black Tree (30 分)
There is a kind of balanced binary search tree named red-black tree in the data structure. It has the following 5 properties:
- (1) Every node is either red or black.
- (2) The root is black.
- (3) Every leaf (NULL) is black.
- (4) If a node is red, then both its children are black.
- (5) For each node, all simple paths from the node to descendant leaves contain the same number of black nodes.
For example, the tree in Figure 1 is a red-black tree, while the ones in Figure 2 and 3 are not.
![]() | ![]() | ![]() |
---|---|---|
Figure 1 | Figure 2 | Figure 3 |
For each given binary search tree, you are supposed to tell if it is a legal red-black tree.
Input Specification:
Each input file contains several test cases. The first line gives a positive integer K (≤30) which is the total number of cases. For each case, the first line gives a positive integer N (≤30), the total number of nodes in the binary tree. The second line gives the preorder traversal sequence of the tree. While all the keys in a tree are positive integers, we use negative signs to represent red nodes. All the numbers in a line are separated by a space. The sample input cases correspond to the trees shown in Figure 1, 2 and 3.
Output Specification:
For each test case, print in a line "Yes" if the given tree is a red-black tree, or "No" if not.
Sample Input:
3
9
7 -2 1 5 -4 -11 8 14 -15
9
11 -2 1 -7 5 -4 8 14 -15
8
10 -7 5 -6 8 15 -11 17
Sample Output:
Yes
No
No
思路分析
红黑树作为一种高级数据结构,本科很少涉及,这里也只是提供红黑树的特点,根据这些特点来判断一个树是否是红黑树
此题涉及一些关于二叉树树的基本操作:BST建树、递归求树高 与 遍历的基本操作
此题的判断点有3个
1、root是否为black
2、red的left、right是否都为black
3、每个node到leaf是否经过相等的black(求树高,只有遇到black才计数)
#include<cstdio>
#include<iostream>
#include<cmath>
#define MAX 100
using namespace std;
typedef struct NODE{
int data;
struct NODE *left;
struct NODE *right;
}NODE;
NODE *node[MAX];
int k;
int n;
int flag=1;
void *insert(NODE *&root,int data)
{
if(root==NULL)
{
NODE *node = new NODE;
node->left=NULL;
node->right=NULL;
node->data=data;
root=node;
}
if(abs(data)<abs(root->data))
insert(root->left,data);
if(abs(data)>abs(root->data))
insert(root->right,data);
}
void judgeChild(NODE *root)
{
if(root==NULL)return;
if(root->data<0)
{
if(root->left!=NULL&&root->left->data<0)flag=0;
if(root->right!=NULL&&root->right->data<0)flag=0;
}
judgeChild(root->left);
judgeChild(root->right);
}
int getNum(NODE *root)
{
if(root==NULL)return 0;
int l=getNum(root->left);
int r=getNum(root->right);
return root->data>0?max(l,r)+1:max(l,r);
}
void judgePath(NODE *root)
{
if(root==NULL)return;
int l=getNum(root->left);
int r=getNum(root->right);
if(l!=r)flag=0;
judgePath(root->left);
judgePath(root->right);
}
void preorder(NODE *root)
{
if(root==NULL)return;
cout<<root->data<<" ";
preorder(root->left);
preorder(root->right);
}
int main()
{
scanf("%d",&k);
while(k--)
{
flag=1;
cin>>n;
NODE *root = new NODE;
root->left=NULL;root->right=NULL;
scanf("%d",&root->data);
if(root->data<0)flag=0;
for(int i=1;i<n;i++)
{
int data;
cin>>data;
insert(root,data);
}
// preorder(root);
// cout<<endl;
judgeChild(root);
judgePath(root);
if(flag==1)cout<<"Yes"<<endl;
else cout<<"No"<<endl;
}
}