Description
Fermat's theorem states that for any prime number p and for any integera > 1, ap = a (mod p). That is, if we raisea to the pth power and divide by p, the remainder isa. Some (but not very many) non-prime values of p, known as base-apseudoprimes, have this property for some a. (And some, known as Carmichael Numbers, are base-a pseudoprimes for alla.)
Given 2 < p ≤ 1000000000 and 1 < a < p, determine whether or notp is a base-a pseudoprime.
Input
Input contains several test cases followed by a line containing "0 0". Each test case consists of a line containingp and a.
Output
For each test case, output "yes" if p is a base-a pseudoprime; otherwise output "no".
Sample Input
3 2 10 3 341 2 341 3 1105 2 1105 3 0 0
Sample Output
no no yes no yes yes
#include <iostream> using namespace std; int prime(long long a) { int i; if(a == 2) return 1; for(i = 2; i*i<=a; i++) if(a%i == 0) return 0; return 1; } long long mod(long long a,long long b,long long m) { long long ans = 1; while(b>0) { if(b&1) { ans = ans*a%m; //b--; } b>>=1; a = a*a%m; } return ans; } int main() { long long a,p; while(cin >> p >> a && (p||a)) { long long ans; if(prime(p)) cout << "no" << endl; else { ans = mod(a,p,p); if(ans == a) cout << "yes" << endl; else cout << "no" << endl; } } return 0; }