638. Shopping Offers

该博客介绍了一个关于购物优惠的问题,其中涉及到不同商品的价格、特殊优惠组合及购买需求。博主通过实现一个深度优先搜索(DFS)算法,找出购买指定商品的最低价格。在示例中,算法考虑了各种优惠组合,如购买一定数量的商品获得折扣,以找到最优解。最终,博主展示了如何应用DFS来计算最小花费,并给出了具体代码实现。

In LeetCode Store, there are some kinds of items to sell. Each item has a price.

However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price.

You are given the each item's price, a set of special offers, and the number we need to buy for each item. The job is to output the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers.

Each special offer is represented in the form of an array, the last number represents the price you need to pay for this special offer, other numbers represents how many specific items you could get if you buy this offer.

You could use any of special offers as many times as you want.

Example 1:
Input: [2,5], [[3,0,5],[1,2,10]], [3,2]
Output: 14
Explanation: 
There are two kinds of items, A and B. Their prices are $2 and $5 respectively. 
In special offer 1, you can pay $5 for 3A and 0B
In special offer 2, you can pay $10 for 1A and 2B. 
You need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A.
Example 2:
Input: [2,3,4], [[1,1,0,4],[2,2,1,9]], [1,2,1]
Output: 11
Explanation: 
The price of A is $2, and $3 for B, $4 for C. 
You may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C. 
You need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C. 
You cannot add more items, though only $9 for 2A ,2B and 1C.
Note:
There are at most 6 kinds of items, 100 special offers.
For each item, you need to buy at most 6 of them.
You are not allowed to buy more items than you want, even if that would lower the overall price.

来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/shopping-offers
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

DFS

class Solution {
    int ans = Integer.MAX_VALUE;
    public int shoppingOffers(List<Integer> price, List<List<Integer>> special, List<Integer> needs) {
        dfs(price, special, needs, 0);
        return ans;
    }

    private void dfs(List<Integer> price, List<List<Integer>> special, List<Integer> needs, int tmpPrice) {
        // needs中都是0,迭代结束
        int count = 0;
        for (int i = 0; i < needs.size(); i++) {
            count += needs.get(i);
        }
        if (count == 0) {
            ans = Math.min(ans, tmpPrice);
            return;
        }
        int nonOfferPrice = 0;
        for(int i = 0; i < needs.size(); i++) {
            nonOfferPrice += price.get(i) * needs.get(i);
        }
        // 算出剩下的商品,都用单价买的价格。
        ans = Math.min(ans, nonOfferPrice + tmpPrice);
        for (int i = 0; i < special.size(); i++) {
            boolean isValid = true;
            for (int j = 0; j < special.get(i).size() - 1; j++) {
                if (needs.get(j) < special.get(i).get(j)) {
                    isValid = false;
                    break;
                }
            }
            if (!isValid) continue;
            for (int j = 0; j < special.get(i).size() - 1; j++) {
                needs.set(j, needs.get(j) - special.get(i).get(j));
            }
            dfs(price, special, needs, tmpPrice + special.get(i).get(special.get(i).size() - 1));
            for (int j = 0; j < special.get(i).size() - 1; j++) {
                needs.set(j, needs.get(j) + special.get(i).get(j));
            }
        }
    }
}

 

MATLAB主动噪声和振动控制算法——对较大的次级路径变化具有鲁棒性内容概要:本文主要介绍了一种在MATLAB环境下实现的主动噪声和振动控制算法,该算法针对较大的次级路径变化具有较强的鲁棒性。文中详细阐述了算法的设计原理与实现方法,重点解决了传统控制系统中因次级路径动态变化导致性能下降的问题。通过引入自适应机制和鲁棒控制策略,提升了系统在复杂环境下的稳定性和控制精度,适用于需要高精度噪声与振动抑制的实际工程场景。此外,文档还列举了多个MATLAB仿真实例及相关科研技术服务内容,涵盖信号处理、智能优化、机器学习等多个交叉领域。; 适合人群:具备一定MATLAB编程基础和控制系统理论知识的科研人员及工程技术人员,尤其适合从事噪声与振动控制、信号处理、自动化等相关领域的研究生和工程师。; 使用场景及目标:①应用于汽车、航空航天、精密仪器等对噪声和振动敏感的工业领域;②用于提升现有主动控制系统对参数变化的适应能力;③为相关科研项目提供算法验证与仿真平台支持; 阅读建议:建议读者结合提供的MATLAB代码进行仿真实验,深入理解算法在不同次级路径条件下的响应特性,并可通过调整控制参数进一步探究其鲁棒性边界。同时可参考文档中列出的相关技术案例拓展应用场景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值