LC 638. Shopping Offers

本文深入探讨了LeetCode上的一道购物优惠算法题,通过分析不同物品价格、特殊优惠组合及所需购买数量,提出了两种解决方案。一种为暴力搜索算法,尽管效率较低,但能确保找到最低价格;另一种为优化后的算法,大幅提升了运行速度,达到在线提交的前90%水平。文章详细介绍了优化算法的实现思路,包括避免重复遍历优惠券、使用新列表减少时间消耗等技巧。

In LeetCode Store, there are some kinds of items to sell. Each item has a price.

However, there are some special offers, and a special offer consists of one or more different kinds of items with a sale price.

You are given the each item's price, a set of special offers, and the number we need to buy for each item. The job is to output the lowest price you have to pay for exactly certain items as given, where you could make optimal use of the special offers.

Each special offer is represented in the form of an array, the last number represents the price you need to pay for this special offer, other numbers represents how many specific items you could get if you buy this offer.

You could use any of special offers as many times as you want.

Example 1:

Input: [2,5], [[3,0,5],[1,2,10]], [3,2]
Output: 14
Explanation: 
There are two kinds of items, A and B. Their prices are $2 and $5 respectively. 
In special offer 1, you can pay $5 for 3A and 0B
In special offer 2, you can pay $10 for 1A and 2B. 
You need to buy 3A and 2B, so you may pay $10 for 1A and 2B (special offer #2), and $4 for 2A.

 

Example 2:

Input: [2,3,4], [[1,1,0,4],[2,2,1,9]], [1,2,1]
Output: 11
Explanation: 
The price of A is $2, and $3 for B, $4 for C. 
You may pay $4 for 1A and 1B, and $9 for 2A ,2B and 1C. 
You need to buy 1A ,2B and 1C, so you may pay $4 for 1A and 1B (special offer #1), and $3 for 1B, $4 for 1C. 
You cannot add more items, though only $9 for 2A ,2B and 1C.

 

Note:

  1. There are at most 6 kinds of items, 100 special offers.
  2. For each item, you need to buy at most 6 of them.
  3. You are not allowed to buy more items than you want, even if that would lower the overall price.

 

Runtime: 53 ms, faster than 12.62% of Java online submissions for Shopping Offers.

自己的揭发,但是时间有点低,纯粹暴力搜索。

先把总的不加优惠券的价格算出来,然后每次遍历优惠券,直到不能再用优惠券。每次用优惠券都是DFS,且保存当前优化的结果,这又是BFS。

class Solution {
  public int shoppingOffers(List<Integer> price, List<List<Integer>> special, List<Integer> needs) {
    int maxval = 0;
    int cnt = 0;
    for(int x : needs){
      maxval += x * price.get(cnt);
      cnt++;
    }
    return helper(price, special, needs, maxval);
  }
  int helper(List<Integer> price, List<List<Integer>> special, List<Integer> needs, int maxval){
    int tmpmax = maxval;
    for(int i=0; i<special.size(); i++){
      List<Integer> newneeds = new ArrayList<>();
      for(int n : needs) newneeds.add(n);
      boolean canuse = true;
      int delta = maxval;
      for(int j=0; j<special.get(i).size()-1; j++){
        if(newneeds.get(j) < special.get(i).get(j)){
          canuse = false;
          break;
        }else {
          delta -= special.get(i).get(j) * price.get(j);
          newneeds.set(j, newneeds.get(j) - special.get(i).get(j));
        }
      }
      if(canuse) {
        delta += special.get(i).get(special.get(i).size()-1);
        tmpmax = Math.min(tmpmax, helper(price, special, newneeds, delta));
      }
    }
    return tmpmax;
  }
}

一个更好的解法

Runtime: 12 ms, faster than 90.29% of Java online submissions for Shopping Offers.

优化解法,

1. 遍历的时候,可以记录当前index,也就是说不需要每次从头遍历,因为只是使用优惠券顺序的关系而已。

2. 我之前会用backtracking偷懒只用一个needs,用到了set,这十分费时。直接开一个新的newneeds,每次用add,效果十分好。

 

class Solution {
  public int shoppingOffers(List<Integer> price, List<List<Integer>> special, List<Integer> needs) {
    int maxval = 0;
    int cnt = 0;
    for(int x : needs){
      maxval += x * price.get(cnt);
      cnt++;
    }
    return helper(price, special, needs, maxval,0);
  }
  int helper(List<Integer> price, List<List<Integer>> special, List<Integer> needs, int maxval, int spindex){
    int tmpmax = maxval;
//    StringBuilder sb = new StringBuilder();
//    for(int i=0; i<needs.size(); i++){
//      sb.append(needs.get(i));
//      sb.append("+");
//    }
//    if(mp.containsKey(sb.toString())) return mp.get(sb.toString());
    for(int i=spindex; i<special.size(); i++){
      //List<Integer> newneeds = new ArrayList<>();
      //for(int n : needs) newneeds.add(n);
      //if(special.get(i).get(special.get(i).size()-1) <= maxval - tmpmax) continue;
      //boolean canuse = true;
      int delta = maxval;
      List<Integer> newneeds = new ArrayList<>();
      for(int j=0; j<special.get(i).size()-1; j++){
        //if(newneeds.get(j) < special.get(i).get(j)){
        if(needs.get(j) < special.get(i).get(j)){
          //canuse = false;
          newneeds = null;
          break;
          //needs.set(j, needs.get(j) - special.get(i).get(j));
        }else {
          delta -= special.get(i).get(j) * price.get(j);
          newneeds.add(needs.get(j) - special.get(i).get(j));
          //newneeds.set(j, newneeds.get(j) - special.get(i).get(j));
          //needs.set(j, needs.get(j) - special.get(i).get(j));
        }
      }
      if(newneeds != null) {
        delta += special.get(i).get(special.get(i).size()-1);
        tmpmax = Math.min(tmpmax, helper(price, special, newneeds, delta, i));
      }
      // for(int k=0; k<special.get(i).size()-1; k++){
      //   needs.set(k, needs.get(k) + special.get(i).get(k));
      // }
    }
//    sb = new StringBuilder();
//    for(int k=0; k<needs.size(); k++){
//      sb.append(k);
//      sb.append("+");
//    }
//    mp.put(sb.toString(), maxval);
    return tmpmax;
  }
}

 

转载于:https://www.cnblogs.com/ethanhong/p/10269824.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值