Given a string s, find the longest palindromic subsequence's length in s. You may assume that the maximum length of s is 1000.
Example 1:
Input:
"bbbab"
Output:
4
One possible longest palindromic subsequence is "bbbb".
Example 2:
Input:
"cbbd"
Output:
2
One possible longest palindromic subsequence is "bb".
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/longest-palindromic-subsequence
著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。
动态规划
dp[j][i]表示从i到j中最长的回文子序列。
如果 s[i] == s[j],那么 dp[j][i] = max(dp[j + 1][i - 1] + 2, dp[i][j])
否则,dp[j][i] = max(dp[j + 1][i], dp[j][i - 1])
注意遍历的顺序,j必须从靠近i的一侧,遍历到其中一端,j不能从两端遍历到i,否则无法获得正确的dp[j + 1][i]。
class Solution {
public int longestPalindromeSubseq(String s) {
int [][]dp = new int[s.length()][s.length()];
for (int i = 0; i < dp.length; i++) {
dp[i][i] = 1;
}
for (int i = 1; i < s.length(); i++) {
for (int j = i - 1; j >= 0; j--) {
if (s.charAt(i) == s.charAt(j)) {
dp[j][i] = Math.max(dp[j + 1][i - 1] + 2, dp[i][j]);
} else {
dp[j][i] = Math.max(dp[j + 1][i], dp[j][i - 1]);
}
}
}
return dp[0][s.length() - 1];
}
}