转载自:http://www.orangecube.NET/Python-time-complexity
本文中,’n’代表容器中元素的数量,’k’代表参数的值,或者参数的数量。
列表(list)
以完全随机的列表考虑平均情况。
列表是以数组(Array)实现的。最大的开销发生在超过当前分配大小的增长,这种情况下所有元素都需要移动;或者是在起始位置附近插入或者删除元素,这种情况下所有在该位置后面的元素都需要移动。如果你需要在一个队列的两端进行增删的操作,应当使用collections.deque(双向队列)
操作 | 平均情况 | 最坏情况 |
---|---|---|
Copy | O(n) | O(n) |
Append | O(1) | O(1) |
Pop last | O(1) | O(1) |
Pop intermediate | O(k) | O(k) |
Insert | O(n) | O(n) |
Get Item | O(1) | O(1) |
Set Item | O(1) | O(1) |
Delete Item | O(n) | O(n) |
Iteration | O(n) | O(n) |
Get Slice | O(k) | O(k) |
Del Slice | O(n) | O(n) |
Set Slice | O(k+n) | O(k+n) |
Extend | O(k) | O(k) |
Sort | O(n log n) | O(n log n) |
Multiply | O(nk) | O(nk) |
x in s | O(n) | |
min(s), max(s) | O(n) | |
Get Length | O(1) | O(1) |
双端队列(collections.deque)
deque (double-ended queue,双端队列)从内部来看实际上是双端链表。双端队列的两端都是可达的,但查找队列中间的元素较为缓慢,增删元素就更慢。
操作 | 平均情况 | 最坏情况 |
---|---|---|
Copy | O(n) | O(n) |
append | O(1) | O(1) |
appendleft | O(1) | O(1) |
pop | O(1) | O(1) |
popleft | O(1) | O(1) |
extend | O(k) | O(k) |
extendleft | O(k) | O(k) |
rotate | O(k) | O(k) |
remove | O(n) | O(n) |
集合(set)
未列出的操作可参考 dict —— 二者的实现非常相似。
操作 | 平均情况 | 最坏情况 | 说明 |
---|---|---|---|
x in s | O(1) | O(n) | |
Union s | t | O(len(s)+len(t)) | |
Intersection s&t | O(min(len(s), len(t)) | O(len(s) * len(t)) | replace “min” with “max” if t is not a set |
Multiple intersection s1&s2&…&sn | (n-1)*O(l) where l is max(len(s1),…,len(sn)) | ||
Difference s-t | O(len(s)) | ||
s.difference_update(t) | O(len(t)) | ||
Symmetric Difference s^t | O(len(s)) | O(len(s) * len(t)) | |
s.symmetric_difference_update(t) | O(len(t)) | O(len(t) * len(s)) |
-
由源码得知,求差集(s-t,或s.difference(t))运算与更新为差集(s.difference_uptate(t))运算的时间复杂度并不相同!前者是将在s中,但不在t中的元素添加到新的集合中,因此时间复杂度为O(len(s));后者是将在t中的元素从s中移除,因此时间复杂度为O(len(t))。因此,使用时请留心,根据两个集合的大小以及是否需要新集合来选择合适的方法。
-
集合的s-t运算中,并不要求t也一定是集合。只要t是可遍历的对象即可。
字典(dict)
下列字典的平均情况基于以下假设:
- 对象的散列函数足够撸棒(robust),不会发生冲突。
- 字典的键是从所有可能的键的集合中随机选择的。
注意:只使用字符串作为字典的键。这么做虽然不会影响算法的时间复杂度,但会对常数项产生显著的影响,这决定了你的一段程序能多快跑完。
操作 | 平均情况 | 最坏情况 |
---|---|---|
复制 | O(n) | O(n) |
取元素 | O(1) | O(n) |
更改元素 | O(1) | O(n) |
删除元素 | O(1) | O(n) |
遍历 | O(n) | O(n) |