题目传送门(请点击开头目录)
http://blog.youkuaiyun.com/lhq_er/article/details/76693851
Solution
T1:模拟一个栈的进出,最后判断是否有剩余即可
T2:求最大全1矩阵,方法是求出极大矩阵后更新,维护单调栈,可以搜,网上有很多
T3:仔细考虑后发现时要求这样的二元组(s,t)是的1—>s—>t—>1,
我们可以枚举(s,t)再跑最短路(去掉1),
还有更快的方法就是去掉1—>s的边后跑Dijkstra(s),这样找有所有的二元组(s,*),一次找n个,找了n^2/n=n次,但还是TLE
100%:
1.我们可以把与s相连的点分为两个集合S,T,建立超级源s到所有S中的节点,边权为1到点的距离,T中的到超级汇t同理,可以随机对半分再找最短路,这样一次找了n^2/4对,有1/4的概率是对的,找log(n)次基本稳了。
2.我们还有一种最稳的方法,按照二进制上某一位的01情况来分S,T,枚举所有的二进制位,0,1,表示的含义在反着做一次就一定能找到最优解,为什么?设正确的答案为(s,t)则s和t至少有一位是不同的,在反着一次就一定对了。
CODE
hgz的
#include<cstdio>
#include<cstdlib>
#include<stack>
#include<algorithm>
using namespace std;
int j,n,a[100010];
struct Node{int x,id;}b[100010];
stack<int>Q;
bool cmp(Node a,Node b){return a.x<b.x;}
int main(){
freopen("disk.in","r",stdin);
freopen("disk.out","w",stdout);
while(~scanf("%d",&n)){
for (int i=1;i<=n;i++){
scanf("%d",&b[i].x);
b[i].id=i;
}
sort(b+1,b+n+1,cmp);
for (int i=1;i<=n;i++){
a[b[i].id]=i;
}
j=1;
while(!Q.empty()){Q.pop();}
for(int i=1;i<=n;i++){
Q.push(i);
while ((!Q.empty())&&(j<=n)&&(Q.top()==a[j])){
Q.pop();
j++;
}
}
if (j<=n) printf("J\n"); else printf("Y\n");
}
return 0;
}
#include <cstdio>
#include <algorithm>
using namespace std;
struct node
{
int st,h;
}stack[1510];
int top,ans,n,m,h[1510][1510];
char str[1510][1510];
void work(int st,int h)
{
int now=st;
while (top>=1&&stack[top].h>h)
{
ans=max(ans,2*(st-stack[top].st+stack[top].h));
now=stack[top--].st;
}
stack[++top]=(node){now,h};
}
void calc()
{
for (int i=1;i<=n;i++)
for (int j=1;j<=m;j++)
if (str[i][j]=='.') h[i][j]=h[i][j-1]+1;
else h[i][j]=0;
ans=0;
for (int j=1;j<=m;j++)
{
top=0;
for (int i=1;i<=n;i++)
work(i,h[i][j]);
work(n+1,0);
}
}
int main()
{
freopen("table.in","r",stdin);
freopen("table.out","w",stdout);
scanf("%d%d",&n,&m);
for (int i=1;i<=n;i++) scanf("%s",str[i]+1);
calc();
printf("%d\n",ans-1);
return 0;
}
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<climits>
#include<queue>
using namespace std;
struct queNode
{
int n, d;
} quenode;
struct vecNode
{
int v, w;
} vecnode;
struct cmp
{
bool operator()(queNode a, queNode b) { return a.d > b.d; }
};
struct Node
{
int u,v,x,y;
}edge[200010];
int n,m,cnt,ans,tmp;
int q[1000005],dis[200010],vet[200010],value[200005],Next[200005],head[200005];
bool vis[200005];
void add(int x,int y,int z)
{
vet[++cnt]=y;
value[cnt]=z;
Next[cnt]=head[x];
head[x]=cnt;
}
void spfa()
{
memset(dis,0x7f7f7f7f,sizeof dis);
memset(vis,0,sizeof vis);
int hd=0;
q[hd]=1;
int tl=1;
dis[1]=0;
vis[1]=true;
while (hd!=tl)
{
int u=q[hd];
hd++;
if (hd==1e6) hd=0;
for (int i=head[u]; i; i=Next[i])
{
int v=vet[i];
if (dis[v]>dis[u]+value[i])
{
dis[v]=dis[u]+value[i];
if (!vis[v])
{
q[tl]=v;
vis[v]=true;
tl++;
if (tl==1e6) tl=0;
}
}
}
vis[u]=false;
}
}
int main()
{
freopen("aknoip.in","r",stdin);
freopen("aknoip.out","w",stdout);
scanf("%d%d",&n,&m);
for (int i=1; i<=m; i++)
scanf("%d%d%d%d",&edge[i].u,&edge[i].v,&edge[i].x,&edge[i].y);
ans=0x7f7f7f7f;
for (int i=0; (1<<i)<=n; i++)
{
cnt=0;
tmp=(1<<i);
memset(head,0,sizeof(head));
for (int j=1; j<=m; j++)
if (edge[j].u!=1 && edge[j].v!=1)
{
add(edge[j].u,edge[j].v,edge[j].x);
add(edge[j].v,edge[j].u,edge[j].y);
}
else
if (edge[j].u==1)
{
if (j&tmp) add(1,edge[j].v,edge[j].x);
else add(edge[j].v,n+1,edge[j].y);
}
else
{
if (j&tmp) add(edge[j].u,n+1,edge[j].x);
else add(1,edge[j].u,edge[j].y);
}
spfa();
if (dis[n+1]<ans) ans=dis[n+1];
}
for (int i=0; (1<<i)<=n; i++)
{
cnt=0;
tmp=(1<<i);
memset(head,0,sizeof(head));
for (int j=1; j<=m; j++)
if (edge[j].u!=1 && edge[j].v!=1)
{
add(edge[j].u,edge[j].v,edge[j].x);
add(edge[j].v,edge[j].u,edge[j].y);
}
else
if (edge[j].u==1)
{
if (j&tmp) add(edge[j].v,n+1,edge[j].y);
else add(1,edge[j].v,edge[j].x);
}
else
{
if (j&tmp) add(1,edge[j].u,edge[j].y);
else add(edge[j].u,n+1,edge[j].x);
}
spfa();
if (dis[n+1]<ans) ans=dis[n+1];
}
if (ans>=0x7f7f7f7f) printf("-1\n");
else printf("%d\n",ans);
return 0;
}