hdoj problem 1024Max Sum Plus Plus(动态规划&&DP问题)

本文介绍了一个名为 MaxSumPlusPlus 的问题,该问题要求在给定序列中找出 m 对下标,使得这些下标的子序列和之总和最大。文章通过动态规划的方法解决了这一挑战,并给出了具体的实现代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Max Sum Plus Plus

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 17208    Accepted Submission(s): 5669


Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.

Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).

Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).

But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
 

Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
 

Output
Output the maximal summation described above in one line.
 

Sample Input
  
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
 

Sample Output
  
6 8
Hint
Huge input, scanf and dynamic programming is recommended.
 

Author
JGShining(极光炫影)
 

Recommend
We have carefully selected several similar problems for you:  1074 1025 1081 1080 1160 
/*
dp思想
dp[i][j]=Max(dp[i][j-1]+pre[i-1][k])+a[j];//条件j<=i+n-m; 
pre[i-1][k]之前最优解法;
dp[i][j]当前最优解法;保存当前状态 
a[j]结束状态; 
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define M 1000001
int data[M];
int pre[M];
int dp[M];
int Max(int a,int b)
{
return a>b?a:b;

int main()
{
int m,n;
while(~scanf("%d%d",&m,&n))
{
int i,j,k;
int max;

for(i=1;i<=n;i++)
 scanf("%d",&data[i]);
 memset(dp,0,sizeof(dp));
 memset(pre,0,sizeof(pre));
 
 if(n<m||m<1)
   max=0;
 dp[0]=0;
          pre[1]=0;

 for(i=1;i<=m;i++)
 {

  dp[i]=dp[i-1]+data[i];
  pre[i-1]=dp[i];

 
  max=dp[i];
  for(j=i+1;j<=i+n-m;j++)
  {
  dp[j]=Max(dp[j-1],pre[j-1])+data[j];
  pre[j-1]=max;
//这两条语句不能写反了,pre[j-1]表示的是上一个状态中i...j-1的最大值,max更新之后表示的i...j的最大值,

  max=Max(max,dp[j]);
  }
  pre[j-1]=max;
 }  
 
 for(i=m;i<=n;i++)
   if(max<dp[i])
     max=dp[i];


printf("%d\n",max);
}
return 0;

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值