Max Sum Plus Plus
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 17208 Accepted Submission(s): 5669
Problem Description
Now I think you have got an AC in Ignatius.L's "Max Sum" problem. To be a brave ACMer, we always challenge ourselves to more difficult problems. Now you are faced with a more difficult problem.
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Given a consecutive number sequence S1, S2, S3, S4 ... Sx, ... Sn (1 ≤ x ≤ n ≤ 1,000,000, -32768 ≤ Sx ≤ 32767). We define a function sum(i, j) = Si + ... + Sj (1 ≤ i ≤ j ≤ n).
Now given an integer m (m > 0), your task is to find m pairs of i and j which make sum(i1, j1) + sum(i2, j2) + sum(i3, j3) + ... + sum(im, jm) maximal (ix ≤ iy ≤ jx or ix ≤ jy ≤ jx is not allowed).
But I`m lazy, I don't want to write a special-judge module, so you don't have to output m pairs of i and j, just output the maximal summation of sum(ix, jx)(1 ≤ x ≤ m) instead. ^_^
Input
Each test case will begin with two integers m and n, followed by n integers S1, S2, S3 ... Sn.
Process to the end of file.
Process to the end of file.
Output
Output the maximal summation described above in one line.
Sample Input
1 3 1 2 3 2 6 -1 4 -2 3 -2 3
Sample Output
6 8HintHuge input, scanf and dynamic programming is recommended.
Author
JGShining(极光炫影)
Recommend
/*
dp思想
dp[i][j]=Max(dp[i][j-1]+pre[i-1][k])+a[j];//条件j<=i+n-m;
pre[i-1][k]之前最优解法;
dp[i][j]当前最优解法;保存当前状态
a[j]结束状态;
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define M 1000001
int data[M];
int pre[M];
int dp[M];
int Max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int m,n;
while(~scanf("%d%d",&m,&n))
{
int i,j,k;
int max;
for(i=1;i<=n;i++)
scanf("%d",&data[i]);
memset(dp,0,sizeof(dp));
memset(pre,0,sizeof(pre));
if(n<m||m<1)
max=0;
dp[0]=0;
pre[1]=0;
for(i=1;i<=m;i++)
{
dp[i]=dp[i-1]+data[i];
pre[i-1]=dp[i];
max=dp[i];
for(j=i+1;j<=i+n-m;j++)
{
dp[j]=Max(dp[j-1],pre[j-1])+data[j];
pre[j-1]=max;//这两条语句不能写反了,pre[j-1]表示的是上一个状态中i...j-1的最大值,max更新之后表示的i...j的最大值,
max=Max(max,dp[j]);
}
pre[j-1]=max;
}
for(i=m;i<=n;i++)
if(max<dp[i])
max=dp[i];
printf("%d\n",max);
}
return 0;
}
dp思想
dp[i][j]=Max(dp[i][j-1]+pre[i-1][k])+a[j];//条件j<=i+n-m;
pre[i-1][k]之前最优解法;
dp[i][j]当前最优解法;保存当前状态
a[j]结束状态;
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define M 1000001
int data[M];
int pre[M];
int dp[M];
int Max(int a,int b)
{
return a>b?a:b;
}
int main()
{
int m,n;
while(~scanf("%d%d",&m,&n))
{
int i,j,k;
int max;
for(i=1;i<=n;i++)
scanf("%d",&data[i]);
memset(dp,0,sizeof(dp));
memset(pre,0,sizeof(pre));
if(n<m||m<1)
max=0;
dp[0]=0;
pre[1]=0;
for(i=1;i<=m;i++)
{
dp[i]=dp[i-1]+data[i];
pre[i-1]=dp[i];
max=dp[i];
for(j=i+1;j<=i+n-m;j++)
{
dp[j]=Max(dp[j-1],pre[j-1])+data[j];
pre[j-1]=max;//这两条语句不能写反了,pre[j-1]表示的是上一个状态中i...j-1的最大值,max更新之后表示的i...j的最大值,
max=Max(max,dp[j]);
}
pre[j-1]=max;
}
for(i=m;i<=n;i++)
if(max<dp[i])
max=dp[i];
printf("%d\n",max);
}
return 0;
}