参考:Manifold regularized matrix completion for multi-label learning with
ADMM
试着推导下:
ρ2∥Z−W+1ρΛ∥F2=ρ2tr[(Z−W+1ρΛ)(Z−W+1ρΛ)T]=ρ2tr[(Z−W+1ρΛ)[(Z−W)T+(1ρΛ)T]=ρ2[∥Z−W∥F2+tr((1ρΛ)(Z−W)T)+tr((Z−W)(1ρΛ)T)+∥1ρΛ∥F2]=ρ2[∥Z−W∥F2+2tr((1ρΛ)(Z−W)T)+∥1ρΛ∥F2]
\frac{\rho}{2}\|Z-W+\frac{1}{\rho}\Lambda\|_F^2 \\
=\frac{\rho}{2}tr[(Z-W+\frac{1}{\rho}\Lambda)(Z-W+\frac{1}{\rho}\Lambda)^T ]\\
=\frac{\rho}{2}tr[(Z-W+\frac{1}{\rho}\Lambda)[(Z-W)^T+(\frac{1}{\rho}\Lambda)^T ]\\
=\frac{\rho}{2}[\|Z-W\|_F^2+tr((\frac{1}{\rho}\Lambda)(Z-W)^T)+tr((Z-W)(\frac{1}{\rho}\Lambda)^T)+\|\frac{1}{\rho}\Lambda\|_F^2] \\
=\frac{\rho}{2}[\|Z-W\|_F^2+2tr((\frac{1}{\rho}\Lambda)(Z-W)^T)+\|\frac{1}{\rho}\Lambda\|_F^2] \\
2ρ∥Z−W+ρ1Λ∥F2=2ρtr[(Z−W+ρ1Λ)(Z−W+ρ1Λ)T]=2ρtr[(Z−W+ρ1Λ)[(Z−W)T+(ρ1Λ)T]=2ρ[∥Z−W∥F2+tr((ρ1Λ)(Z−W)T)+tr((Z−W)(ρ1Λ)T)+∥ρ1Λ∥F2]=2ρ[∥Z−W∥F2+2tr((ρ1Λ)(Z−W)T)+∥ρ1Λ∥F2]
貌似不对……
换一个:
ρ2∥Z−W+1ρΛ∥F2=ρ2∑(z−w+1ρΛ)2=ρ2∑[(z−w)2+(1ρΛ)2+2(z−w)1ρΛ]=ρ2∥Z−W∥F2+⟨Z−W,Λ⟩+12ρ∥Λ∥F2
\frac{\rho}{2}\|Z-W+\frac{1}{\rho}\Lambda\|_F^2 \\
=\frac{\rho}{2}\sum(z-w+\frac{1}{\rho}\Lambda)^2 \\
=\frac{\rho}{2}\sum[(z-w)^2+(\frac{1}{\rho}\Lambda)^2+2(z-w)\frac{1}{\rho}\Lambda] \\
=\frac{\rho}{2}\|Z-W\|_F^2+\langle Z-W,\Lambda \rangle+\frac{1}{2\rho}\|\Lambda\|_F^2
2ρ∥Z−W+ρ1Λ∥F2=2ρ∑(z−w+ρ1Λ)2=2ρ∑[(z−w)2+(ρ1Λ)2+2(z−w)ρ1Λ]=2ρ∥Z−W∥F2+⟨Z−W,Λ⟩+2ρ1∥Λ∥F2
之前疑惑,不管怎么算,都多了一项,不知道为啥!!!
后面经 知乎 长驱鬼侠大神解答。是因为:
因为表达式是对Z求min,所以加Λ的任意函数都成立\textcolor{red}{因为表达式是对Z求min,所以加 \Lambda 的任意函数都成立}因为表达式是对Z求min,所以加Λ的任意函数都成立,所以可以任意凑项。即将12ρ∥Λ∥F2\frac{1}{2\rho}\|\Lambda\|_F^22ρ1∥Λ∥F2视为无关紧要的拼凑项。
大神V5, 点赞大神!!!