Turn Right
Time Limit: 6000/2000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 1106 Accepted Submission(s): 359
Problem Description
This summer, ELT and his classmates went to Beijing for a training of coding. ELT have never been to Beijing before, so at the weekend, he together with some friends went to the National Museum, it's free for students!
The National Museum consists of many parts. One part of it is an exhibition of Ancient China From Xia Dynasty to Qing Dynasty, it needs a big room to show all the things. What's more, there exist many walls to hang pictures. The boundary of this room is walls except the entrance and exit.
With walls, an entrance and an exit, this room can be regarded as a maze. To make it simple, this room is a R*C grid, wall is constructed at some edges of grid. The entrance is always at the first row, and the exit is always at the last row, just like the picture below.
ELT can't remember his direction in maze, but he is a clever boy. He knew an algorithm called "Always Turn Right", it's procedure is as follows: at any grid of this room, if we can turn right(no wall at right side), then we must turn right; if we can't turn right but can go straight forward, then we must go forward; if we can't go forward but can turn left, then we must turn left; if we can't even turn left, we just turn backward. In the picture above, if we use this algorithm, we'll visit these grids in order: Entrance --> (0, 1) --> (0, 0) --> (0, 1) --> (0, 2) --> (1, 2) --> (1, 1) --> (1, 0) --> (2, 0) --> (1, 0) --> (1, 1) --> (2, 1) --> (2, 2) --> Exit. Very easy, doesn't it?
ELT uses "Always Turn Right" algorithm to visit this room from entrance to exit, and then from exit to entrance. He wants to know whether he walked all grids in the room. Now ELT is dizzy because the maze is too big, can you help him?
The National Museum consists of many parts. One part of it is an exhibition of Ancient China From Xia Dynasty to Qing Dynasty, it needs a big room to show all the things. What's more, there exist many walls to hang pictures. The boundary of this room is walls except the entrance and exit.
With walls, an entrance and an exit, this room can be regarded as a maze. To make it simple, this room is a R*C grid, wall is constructed at some edges of grid. The entrance is always at the first row, and the exit is always at the last row, just like the picture below.

ELT can't remember his direction in maze, but he is a clever boy. He knew an algorithm called "Always Turn Right", it's procedure is as follows: at any grid of this room, if we can turn right(no wall at right side), then we must turn right; if we can't turn right but can go straight forward, then we must go forward; if we can't go forward but can turn left, then we must turn left; if we can't even turn left, we just turn backward. In the picture above, if we use this algorithm, we'll visit these grids in order: Entrance --> (0, 1) --> (0, 0) --> (0, 1) --> (0, 2) --> (1, 2) --> (1, 1) --> (1, 0) --> (2, 0) --> (1, 0) --> (1, 1) --> (2, 1) --> (2, 2) --> Exit. Very easy, doesn't it?
ELT uses "Always Turn Right" algorithm to visit this room from entrance to exit, and then from exit to entrance. He wants to know whether he walked all grids in the room. Now ELT is dizzy because the maze is too big, can you help him?
Input
First line is an integer T, means T test cases. In each test case, the first line has four numbers: R, C, Ent_Column, Exit_Column. Ent_Column is the column number of entrance; Exit_Column is the column number of exit.
Then following 2*R-1 lines, 2*i line have C-1 numbers, the j-th number shows whether there is a wall between grid(i, j) and grid(i, j+1), 2*i+1 line have C numbers, the j-th number shows whether there is a wall between grid(i, j) and grid(i+1, j). Number 1 represents a wall, 0 represents no wall.
We guarantee that there exists a path from entrance to exit.
2 <= R, C <= 500
0 <= Ent_Column, Exit_Column < C
Then following 2*R-1 lines, 2*i line have C-1 numbers, the j-th number shows whether there is a wall between grid(i, j) and grid(i, j+1), 2*i+1 line have C numbers, the j-th number shows whether there is a wall between grid(i, j) and grid(i+1, j). Number 1 represents a wall, 0 represents no wall.
We guarantee that there exists a path from entrance to exit.
2 <= R, C <= 500
0 <= Ent_Column, Exit_Column < C
Output
If ELT can walk all grids in the room, print one line "YES", otherwise, print one line "NO".
Sample Input
1 3 4 1 2 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0 0
Sample Output
YES
简单的模拟,DFS ,因为 if 后少一对括号,做了很久o(╯□╰)o; 每次按题目顺序查找能进入的第一个房间,然后记录进入的方向,然后根据进入的方向继续查找能进的房,注意的是到达出口或者入口所在的房间不能马上就停止,还得依然要安顺序看看有没有可以走的房间,值得走到出口方向。
提供2组数据: 3 4 1 2
0 0 0
0 0 1 0
0 1 1
0 1 0 0
1 0 0
注意是否到达 1 2 及 2 1 是否到达。答案YES .
#include<iostream>
#include<cstring>
using namespace std;
int R,C,entc,outc;
bool grid[500][500][2],vsd[500][500];
int test(){
for( int i=0;i<R;i++){
for(int j=0;j<C;j++)
if(vsd[i][j]==0) {return 0;}
}
return 1;
}
void dfs(int x,int y,int tag,int f){
vsd[x][y]=1;
if(tag==0&&x==R-1&&y==outc){
if(f==1&&grid[x-1][y][1]==0&&!vsd[x-1][y]) dfs(x-1,y,tag,2);
else if(y>0&&grid[x][y-1][0]==0&&!vsd[x][y-1]) dfs(x,y-1,tag,1);
else dfs(x,y,1,2);
}
else if(tag==1&&x==0&&y==entc){
if(f==3&&grid[1][y][1]==0&&!vsd[1][y]) dfs(1,y,tag,0);
else if(y<C-1&&grid[x][y][0]==0&&!vsd[x][y+1]) dfs(x,y+1,tag,3);
else if(test())cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}else{
if(f==0){ //从右边进来
if(y>0&&grid[x][y-1][0]==0){ dfs(x,y-1,tag,1); }
else if(x<R-1&&grid[x][y][1]==0) { dfs(x+1,y,tag,0); }
else if(y<C-1&&grid[x][y][0]==0){dfs(x,y+1,tag,3); }
else { dfs(x-1,y,tag,2); }
}
else if(f==1){ //从上边进来
if(x>0&&grid[x-1][y][1]==0){ dfs(x-1,y,tag,2); }
else if(y>0&&grid[x][y-1][0]==0) { dfs(x,y-1,tag,1); }
else if(x<R-1&&grid[x][y][1]==0){dfs(x+1,y,tag,0); }
else { dfs(x,y+1,tag,3); }
}
else if(f==2){ //从左边进来
if(y<C-1&&grid[x][y][0]==0){ dfs(x,y+1,tag,3); }
else if(x>0&&grid[x-1][y][1]==0) { dfs(x-1,y,tag,2); }
else if(y>0&&grid[x][y-1][0]==0){dfs(x,y-1,tag,1); }
else { dfs(x+1,y,tag,0); }
}else //从下边进来
{
if(x<R-1&&grid[x][y][1]==0){ dfs(x+1,y,tag,0); }
else if(y<C-1&&grid[x][y][0]==0) { dfs(x,y+1,tag,3); }
else if(x>0&&grid[x-1][y][1]==0){dfs(x-1,y,tag,2); }
else { dfs(x,y-1,tag,1); }
}
}
}
int main(void){
int t;
cin>>t;
while(t--){
cin>>R>>C>>entc>>outc;
for( int i=0;i<R;i++){
for(int j=0;j<C-1;j++){
cin>>grid[i][j][0]; //存竖向墙
}
if(i==R-1) break;
for(int j=0;j<C;j++){
cin>>grid[i][j][1]; //存横向墙
}
}
memset(vsd,0,sizeof(vsd));
dfs(0,entc,0,0);
}
}
#include<cstring>
using namespace std;
int R,C,entc,outc;
bool grid[500][500][2],vsd[500][500];
int test(){
for( int i=0;i<R;i++){
for(int j=0;j<C;j++)
if(vsd[i][j]==0) {return 0;}
}
return 1;
}
void dfs(int x,int y,int tag,int f){
vsd[x][y]=1;
if(tag==0&&x==R-1&&y==outc){
if(f==1&&grid[x-1][y][1]==0&&!vsd[x-1][y]) dfs(x-1,y,tag,2);
else if(y>0&&grid[x][y-1][0]==0&&!vsd[x][y-1]) dfs(x,y-1,tag,1);
else dfs(x,y,1,2);
}
else if(tag==1&&x==0&&y==entc){
if(f==3&&grid[1][y][1]==0&&!vsd[1][y]) dfs(1,y,tag,0);
else if(y<C-1&&grid[x][y][0]==0&&!vsd[x][y+1]) dfs(x,y+1,tag,3);
else if(test())cout<<"YES"<<endl;
else cout<<"NO"<<endl;
}else{
if(f==0){ //从右边进来
if(y>0&&grid[x][y-1][0]==0){ dfs(x,y-1,tag,1); }
else if(x<R-1&&grid[x][y][1]==0) { dfs(x+1,y,tag,0); }
else if(y<C-1&&grid[x][y][0]==0){dfs(x,y+1,tag,3); }
else { dfs(x-1,y,tag,2); }
}
else if(f==1){ //从上边进来
if(x>0&&grid[x-1][y][1]==0){ dfs(x-1,y,tag,2); }
else if(y>0&&grid[x][y-1][0]==0) { dfs(x,y-1,tag,1); }
else if(x<R-1&&grid[x][y][1]==0){dfs(x+1,y,tag,0); }
else { dfs(x,y+1,tag,3); }
}
else if(f==2){ //从左边进来
if(y<C-1&&grid[x][y][0]==0){ dfs(x,y+1,tag,3); }
else if(x>0&&grid[x-1][y][1]==0) { dfs(x-1,y,tag,2); }
else if(y>0&&grid[x][y-1][0]==0){dfs(x,y-1,tag,1); }
else { dfs(x+1,y,tag,0); }
}else //从下边进来
{
if(x<R-1&&grid[x][y][1]==0){ dfs(x+1,y,tag,0); }
else if(y<C-1&&grid[x][y][0]==0) { dfs(x,y+1,tag,3); }
else if(x>0&&grid[x-1][y][1]==0){dfs(x-1,y,tag,2); }
else { dfs(x,y-1,tag,1); }
}
}
}
int main(void){
int t;
cin>>t;
while(t--){
cin>>R>>C>>entc>>outc;
for( int i=0;i<R;i++){
for(int j=0;j<C-1;j++){
cin>>grid[i][j][0]; //存竖向墙
}
if(i==R-1) break;
for(int j=0;j<C;j++){
cin>>grid[i][j][1]; //存横向墙
}
}
memset(vsd,0,sizeof(vsd));
dfs(0,entc,0,0);
}
}