pyspark sql大数据处理常用操作

本文介绍如何使用 Spark SQL 创建表格,并设置分区及存储方式。通过 Python 和 Pandas 处理数据,创建临时表并插入到数据库表中。同时,提供了解决 toPandas() 操作时数据展示不完全的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

常用建表语句,设置分区并设置表内容存储方式:

spark.sql(f"""
    CREATE TABLE IF NOT EXISTS table_name (
        `key` string, 
        `value` string
    )
    PARTITIONED BY(dt string COMMENT "日期分区")
    ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t' STORED AS ORC
""")

数据转成Dataframe,并创建临时表,插入到数据库表中:

import pandas as pd

a = 0.000001
b = 0.0002

value = f'\u007b"name":"xxxx","params":\u007b"model_name":"xgb","model_weight":{a},"threshold":{b},"merge":true,"ids":[1000260]\u007d\u007d'

conf = [
        ['a',value1],
        ['b',value2]
       ]

tmp_pd=pd.DataFrame(conf)
spark.sql(f"drop view if exists tmp_pd")
spark.createDataFrame(tmp_pd).createOrReplaceTempView("tmp_pd")
a=spark.sql(f"""
select * from tmp_pd
""").toPandas()
print(a.iloc[0,1])

dt='20221014'
spark.sql(f"""
INSERT OVERWRITE TABLE table_name
PARTITION(dt='{dt}')
select * from tmp_pd
""")

toPanda()操作展示数据不完全解决方法:

pd.set_option('display.max_columns', None)  # 显示所有列
pd.set_option('max_colwidth',500) # 设置value的显示长度为500,默认为50,这里的500可以根据需求调大调小
spark.sql(f"""
select * from table_name
order by dt
""").toPandas()

 sql查询出来的数据创建临时表并缓存:

data = spark.sql(f"""
           select * from table_name
       """).rdd \
           .toDF(["a","b"])
data.cache()
data.createOrReplaceTempView("data_info_tb")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值