在windows非GUI执行Jmeter过程

本文详细记录了使用JMeter进行性能测试的过程,包括测试环境搭建、脚本执行、结果分析等关键步骤。通过逐步递增的测试案例,展示了在不同负载下系统的响应时间和错误率变化,为性能调优提供了数据支持。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

------------bat执行开始-----------

C:\Users\myname\Desktop>cd /d E:\jmreport_buy\a

E:\jmreport_buy\a>del /s /q /f *.*

E:\jmreport_buy\a>for / %i in (*) do rd /s /q "%i"

E:\jmreport_buy\a>call cd /d E:\jmreport_buy\

E:\jmreport_buy>del /s /q /f *.*
删除文件 - E:\jmreport_buy\cpu.jtl
删除文件 - E:\jmreport_buy\sum.jtl

E:\jmreport_buy>call cd /d D:\apache-jmeter-3.1\bin

D:\apache-jmeter-3.1\bin>jmeter -n -t E:\mywork\hs-jmx\MIT\MIT_buy.jmx -l E:\jmreport_buy\sum.jtl -e -o E:\jmreport_buy\a
-----------从这里就开始执行了------------
Writing log file to: D:\apache-jmeter-3.1\bin\jmeter.log
Creating summariser <summary>
Created the tree successfully using E:\mywork\hs-jmx\MIT\MIT_buy.jmx
Starting the test @ Mon Nov 05 15:08:12 CST 2018 (1541401692453)
Waiting for possible Shutdown/StopTestNow/Heapdump message on port 4445
----------这段日志,是因为我的JMETER里面配置了activemq---------
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/D:/apache-jmeter-3.1/lib/activemq-all-5.15.6.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/D:/apache-jmeter-3.1/lib/ApacheJMeter_slf4j_logkit.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]
----------逐渐递增的过程-----------
summary +    204 in 00:00:17 =   12.3/s Avg:    46 Min:    12 Max:   491 Err:   204 (100.00%) Active: 75 Started: 75 Finished: 0
summary +    618 in 00:00:30 =   20.6/s Avg:   756 Min:    11 Max: 14644 Err:   428 (69.26%) Active: 100 Started: 100 Finished: 0
summary =    822 in 00:00:46 =   17.7/s Avg:   580 Min:    11 Max: 14644 Err:   632 (76.89%)
summary +    204 in 00:00:30 =    6.8/s Avg:  9540 Min:    44 Max: 37723 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   1026 in 00:01:17 =   13.4/s Avg:  2362 Min:    11 Max: 37723 Err:   632 (61.60%)
summary +    202 in 00:00:30 =    6.7/s Avg: 12777 Min:    37 Max: 37862 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   1228 in 00:01:46 =   11.5/s Avg:  4075 Min:    11 Max: 37862 Err:   632 (51.47%)
summary +    201 in 00:00:30 =    6.7/s Avg: 12553 Min:    27 Max: 38731 Err:     2 (1.00%) Active: 100 Started: 100 Finished: 0
summary =   1429 in 00:02:16 =   10.5/s Avg:  5267 Min:    11 Max: 38731 Err:   634 (44.37%)
summary +    186 in 00:00:30 =    6.2/s Avg: 13139 Min:    46 Max: 40740 Err:     1 (0.54%) Active: 100 Started: 100 Finished: 0
summary =   1615 in 00:02:47 =    9.7/s Avg:  6174 Min:    11 Max: 40740 Err:   635 (39.32%)
summary +    207 in 00:00:30 =    6.9/s Avg: 12944 Min:    24 Max: 40733 Err:     4 (1.93%) Active: 100 Started: 100 Finished: 0
summary =   1822 in 00:03:17 =    9.3/s Avg:  6943 Min:    11 Max: 40740 Err:   639 (35.07%)
summary +    200 in 00:00:30 =    6.7/s Avg: 12748 Min:    28 Max: 39747 Err:     3 (1.50%) Active: 100 Started: 100 Finished: 0
summary =   2022 in 00:03:47 =    8.9/s Avg:  7517 Min:    11 Max: 40740 Err:   642 (31.75%)
summary +    209 in 00:00:30 =    7.0/s Avg: 12969 Min:    37 Max: 39118 Err:     1 (0.48%) Active: 100 Started: 100 Finished: 0
summary =   2231 in 00:04:16 =    8.7/s Avg:  8028 Min:    11 Max: 40740 Err:   643 (28.82%)
summary +    187 in 00:00:30 =    6.2/s Avg: 12744 Min:    45 Max: 37860 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   2418 in 00:04:47 =    8.4/s Avg:  8393 Min:    11 Max: 40740 Err:   643 (26.59%)
summary +    203 in 00:00:30 =    6.7/s Avg: 13367 Min:    31 Max: 40539 Err:     2 (0.99%) Active: 100 Started: 100 Finished: 0
summary =   2621 in 00:05:17 =    8.3/s Avg:  8778 Min:    11 Max: 40740 Err:   645 (24.61%)
summary +    198 in 00:00:30 =    6.6/s Avg: 12958 Min:    29 Max: 39632 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   2819 in 00:05:47 =    8.1/s Avg:  9072 Min:    11 Max: 40740 Err:   646 (22.92%)
summary +    197 in 00:00:30 =    6.6/s Avg: 12866 Min:    25 Max: 38929 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   3016 in 00:06:16 =    8.0/s Avg:  9319 Min:    11 Max: 40740 Err:   647 (21.45%)
summary +    195 in 00:00:30 =    6.5/s Avg: 13241 Min:    24 Max: 39524 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   3211 in 00:06:46 =    7.9/s Avg:  9558 Min:    11 Max: 40740 Err:   648 (20.18%)
summary +    208 in 00:00:30 =    6.9/s Avg: 12807 Min:    26 Max: 38668 Err:     1 (0.48%) Active: 100 Started: 100 Finished: 0
summary =   3419 in 00:07:17 =    7.8/s Avg:  9755 Min:    11 Max: 40740 Err:   649 (18.98%)
summary +    214 in 00:00:30 =    7.1/s Avg: 12049 Min:    28 Max: 37186 Err:     2 (0.93%) Active: 100 Started: 100 Finished: 0
summary =   3633 in 00:07:46 =    7.8/s Avg:  9890 Min:    11 Max: 40740 Err:   651 (17.92%)
summary +    209 in 00:00:30 =    6.9/s Avg: 11973 Min:    36 Max: 36260 Err:     1 (0.48%) Active: 100 Started: 100 Finished: 0
summary =   3842 in 00:08:17 =    7.7/s Avg: 10004 Min:    11 Max: 40740 Err:   652 (16.97%)
summary +    216 in 00:00:30 =    7.3/s Avg: 11853 Min:    30 Max: 36511 Err:     2 (0.93%) Active: 100 Started: 100 Finished: 0
summary =   4058 in 00:08:46 =    7.7/s Avg: 10102 Min:    11 Max: 40740 Err:   654 (16.12%)
summary +    209 in 00:00:30 =    7.0/s Avg: 11942 Min:    26 Max: 36688 Err:     2 (0.96%) Active: 100 Started: 100 Finished: 0
summary =   4267 in 00:09:17 =    7.7/s Avg: 10192 Min:    11 Max: 40740 Err:   656 (15.37%)
summary +    218 in 00:00:30 =    7.3/s Avg: 12175 Min:    25 Max: 37112 Err:     4 (1.83%) Active: 100 Started: 100 Finished: 0
summary =   4485 in 00:09:46 =    7.6/s Avg: 10289 Min:    11 Max: 40740 Err:   660 (14.72%)
summary +    216 in 00:00:30 =    7.2/s Avg: 11472 Min:    30 Max: 36132 Err:     3 (1.39%) Active: 100 Started: 100 Finished: 0
summary =   4701 in 00:10:16 =    7.6/s Avg: 10343 Min:    11 Max: 40740 Err:   663 (14.10%)
summary +    204 in 00:00:30 =    6.8/s Avg: 12222 Min:    41 Max: 36942 Err:     1 (0.49%) Active: 100 Started: 100 Finished: 0
summary =   4905 in 00:10:47 =    7.6/s Avg: 10421 Min:    11 Max: 40740 Err:   664 (13.54%)
summary +    198 in 00:00:30 =    6.6/s Avg: 12413 Min:    37 Max: 39350 Err:     3 (1.52%) Active: 100 Started: 100 Finished: 0
summary =   5103 in 00:11:17 =    7.5/s Avg: 10498 Min:    11 Max: 40740 Err:   667 (13.07%)
summary +    191 in 00:00:30 =    6.4/s Avg: 13570 Min:    40 Max: 40534 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   5294 in 00:11:47 =    7.5/s Avg: 10609 Min:    11 Max: 40740 Err:   667 (12.60%)
summary +    198 in 00:00:30 =    6.6/s Avg: 13175 Min:    31 Max: 40431 Err:     3 (1.52%) Active: 100 Started: 100 Finished: 0
summary =   5492 in 00:12:17 =    7.5/s Avg: 10702 Min:    11 Max: 40740 Err:   670 (12.20%)
summary +    202 in 00:00:30 =    6.7/s Avg: 13229 Min:    33 Max: 39313 Err:     1 (0.50%) Active: 100 Started: 100 Finished: 0
summary =   5694 in 00:12:47 =    7.4/s Avg: 10791 Min:    11 Max: 40740 Err:   671 (11.78%)
summary +    202 in 00:00:30 =    6.8/s Avg: 12695 Min:    29 Max: 39335 Err:     3 (1.49%) Active: 100 Started: 100 Finished: 0
summary =   5896 in 00:13:17 =    7.4/s Avg: 10857 Min:    11 Max: 40740 Err:   674 (11.43%)
summary +    205 in 00:00:30 =    6.8/s Avg: 12396 Min:    36 Max: 39135 Err:     2 (0.98%) Active: 100 Started: 100 Finished: 0
summary =   6101 in 00:13:47 =    7.4/s Avg: 10908 Min:    11 Max: 40740 Err:   676 (11.08%)
summary +    204 in 00:00:30 =    6.7/s Avg: 12849 Min:    29 Max: 38954 Err:     3 (1.47%) Active: 100 Started: 100 Finished: 0
summary =   6305 in 00:14:17 =    7.4/s Avg: 10971 Min:    11 Max: 40740 Err:   679 (10.77%)
summary +    208 in 00:00:30 =    7.0/s Avg: 12208 Min:    28 Max: 38478 Err:     3 (1.44%) Active: 100 Started: 100 Finished: 0
summary =   6513 in 00:14:47 =    7.3/s Avg: 11011 Min:    11 Max: 40740 Err:   682 (10.47%)
summary +    196 in 00:00:30 =    6.5/s Avg: 12884 Min:    45 Max: 39222 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   6709 in 00:15:17 =    7.3/s Avg: 11065 Min:    11 Max: 40740 Err:   683 (10.18%)
summary +    198 in 00:00:30 =    6.6/s Avg: 12899 Min:    28 Max: 39201 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   6907 in 00:15:47 =    7.3/s Avg: 11118 Min:    11 Max: 40740 Err:   684 (9.90%)
summary +    203 in 00:00:30 =    6.8/s Avg: 13174 Min:    29 Max: 38586 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   7110 in 00:16:17 =    7.3/s Avg: 11177 Min:    11 Max: 40740 Err:   684 (9.62%)
summary +    206 in 00:00:30 =    6.9/s Avg: 12301 Min:    35 Max: 38034 Err:     3 (1.46%) Active: 100 Started: 100 Finished: 0
summary =   7316 in 00:16:47 =    7.3/s Avg: 11208 Min:    11 Max: 40740 Err:   687 (9.39%)
summary +    207 in 00:00:30 =    6.9/s Avg: 12267 Min:    39 Max: 37326 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   7523 in 00:17:17 =    7.3/s Avg: 11237 Min:    11 Max: 40740 Err:   687 (9.13%)
summary +    204 in 00:00:30 =    6.8/s Avg: 12547 Min:    32 Max: 37357 Err:     1 (0.49%) Active: 100 Started: 100 Finished: 0
summary =   7727 in 00:17:47 =    7.2/s Avg: 11272 Min:    11 Max: 40740 Err:   688 (8.90%)
summary +    196 in 00:00:30 =    6.5/s Avg: 12681 Min:    43 Max: 38838 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   7923 in 00:18:17 =    7.2/s Avg: 11307 Min:    11 Max: 40740 Err:   689 (8.70%)
summary +    210 in 00:00:30 =    7.0/s Avg: 12486 Min:    33 Max: 38652 Err:     1 (0.48%) Active: 100 Started: 100 Finished: 0
summary =   8133 in 00:18:47 =    7.2/s Avg: 11337 Min:    11 Max: 40740 Err:   690 (8.48%)
summary +    202 in 00:00:30 =    6.7/s Avg: 12859 Min:    41 Max: 37829 Err:     1 (0.50%) Active: 100 Started: 100 Finished: 0
summary =   8335 in 00:19:17 =    7.2/s Avg: 11374 Min:    11 Max: 40740 Err:   691 (8.29%)
summary +    224 in 00:00:30 =    7.5/s Avg: 11752 Min:    35 Max: 38320 Err:     4 (1.79%) Active: 100 Started: 100 Finished: 0
summary =   8559 in 00:19:47 =    7.2/s Avg: 11384 Min:    11 Max: 40740 Err:   695 (8.12%)
summary +    197 in 00:00:30 =    6.6/s Avg: 12239 Min:    25 Max: 38723 Err:     2 (1.02%) Active: 100 Started: 100 Finished: 0
summary =   8756 in 00:20:17 =    7.2/s Avg: 11403 Min:    11 Max: 40740 Err:   697 (7.96%)
summary +    197 in 00:00:30 =    6.6/s Avg: 12731 Min:    28 Max: 39385 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =   8953 in 00:20:46 =    7.2/s Avg: 11432 Min:    11 Max: 40740 Err:   698 (7.80%)
summary +    191 in 00:00:30 =    6.4/s Avg: 13482 Min:    26 Max: 39582 Err:     1 (0.52%) Active: 100 Started: 100 Finished: 0
summary =   9144 in 00:21:16 =    7.2/s Avg: 11475 Min:    11 Max: 40740 Err:   699 (7.64%)
summary +    192 in 00:00:30 =    6.3/s Avg: 13565 Min:    41 Max: 40590 Err:     1 (0.52%) Active: 100 Started: 100 Finished: 0
summary =   9336 in 00:21:47 =    7.1/s Avg: 11518 Min:    11 Max: 40740 Err:   700 (7.50%)
summary +    199 in 00:00:30 =    6.7/s Avg: 13388 Min:    40 Max: 40470 Err:     1 (0.50%) Active: 100 Started: 100 Finished: 0
summary =   9535 in 00:22:17 =    7.1/s Avg: 11557 Min:    11 Max: 40740 Err:   701 (7.35%)
summary +    197 in 00:00:30 =    6.6/s Avg: 12762 Min:    45 Max: 39390 Err:     2 (1.02%) Active: 100 Started: 100 Finished: 0
summary =   9732 in 00:22:47 =    7.1/s Avg: 11582 Min:    11 Max: 40740 Err:   703 (7.22%)
summary +    193 in 00:00:30 =    6.4/s Avg: 13250 Min:    37 Max: 39422 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =   9925 in 00:23:16 =    7.1/s Avg: 11614 Min:    11 Max: 40740 Err:   703 (7.08%)
summary +    193 in 00:00:30 =    6.4/s Avg: 13334 Min:    26 Max: 40584 Err:     2 (1.04%) Active: 100 Started: 100 Finished: 0
summary =  10118 in 00:23:47 =    7.1/s Avg: 11647 Min:    11 Max: 40740 Err:   705 (6.97%)
summary +    207 in 00:00:30 =    6.9/s Avg: 12963 Min:    28 Max: 40081 Err:     2 (0.97%) Active: 100 Started: 100 Finished: 0
summary =  10325 in 00:24:16 =    7.1/s Avg: 11673 Min:    11 Max: 40740 Err:   707 (6.85%)
summary +    210 in 00:00:30 =    7.0/s Avg: 12071 Min:    26 Max: 38238 Err:     3 (1.43%) Active: 100 Started: 100 Finished: 0
summary =  10535 in 00:24:47 =    7.1/s Avg: 11681 Min:    11 Max: 40740 Err:   710 (6.74%)
summary +    208 in 00:00:30 =    6.9/s Avg: 12278 Min:    29 Max: 38565 Err:     3 (1.44%) Active: 100 Started: 100 Finished: 0
summary =  10743 in 00:25:17 =    7.1/s Avg: 11693 Min:    11 Max: 40740 Err:   713 (6.64%)
summary +    194 in 00:00:30 =    6.5/s Avg: 12949 Min:    32 Max: 39111 Err:     2 (1.03%) Active: 100 Started: 100 Finished: 0
summary =  10937 in 00:25:47 =    7.1/s Avg: 11715 Min:    11 Max: 40740 Err:   715 (6.54%)
summary +    204 in 00:00:30 =    6.7/s Avg: 13367 Min:    44 Max: 40036 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =  11141 in 00:26:17 =    7.1/s Avg: 11745 Min:    11 Max: 40740 Err:   715 (6.42%)
summary +    204 in 00:00:30 =    6.9/s Avg: 11898 Min:    30 Max: 37900 Err:     3 (1.47%) Active: 100 Started: 100 Finished: 0
summary =  11345 in 00:26:46 =    7.1/s Avg: 11748 Min:    11 Max: 40740 Err:   718 (6.33%)
summary +    198 in 00:00:30 =    6.6/s Avg: 13367 Min:    46 Max: 39485 Err:     1 (0.51%) Active: 100 Started: 100 Finished: 0
summary =  11543 in 00:27:17 =    7.1/s Avg: 11776 Min:    11 Max: 40740 Err:   719 (6.23%)
summary +    200 in 00:00:30 =    6.7/s Avg: 12651 Min:    44 Max: 38302 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =  11743 in 00:27:46 =    7.0/s Avg: 11791 Min:    11 Max: 40740 Err:   719 (6.12%)
summary +    180 in 00:00:30 =    5.9/s Avg: 13859 Min:    49 Max: 41650 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =  11923 in 00:28:17 =    7.0/s Avg: 11822 Min:    11 Max: 41650 Err:   719 (6.03%)
summary +    200 in 00:00:30 =    6.7/s Avg: 13670 Min:    47 Max: 41145 Err:     1 (0.50%) Active: 100 Started: 100 Finished: 0
summary =  12123 in 00:28:46 =    7.0/s Avg: 11852 Min:    11 Max: 41650 Err:   720 (5.94%)
summary +    203 in 00:00:30 =    6.7/s Avg: 12271 Min:    26 Max: 38329 Err:     1 (0.49%) Active: 100 Started: 100 Finished: 0
summary =  12326 in 00:29:17 =    7.0/s Avg: 11859 Min:    11 Max: 41650 Err:   721 (5.85%)
summary +    195 in 00:00:30 =    6.5/s Avg: 13394 Min:    50 Max: 38983 Err:     0 (0.00%) Active: 100 Started: 100 Finished: 0
summary =  12521 in 00:29:47 =    7.0/s Avg: 11883 Min:    11 Max: 41650 Err:   721 (5.76%)
summary +    128 in 00:00:30 =    4.2/s Avg: 19729 Min:    47 Max: 39563 Err:     0 (0.00%) Active: 51 Started: 100 Finished: 49
summary =  12649 in 00:30:17 =    7.0/s Avg: 11963 Min:    11 Max: 41650 Err:   721 (5.70%)
summary +     50 in 00:00:23 =    2.2/s Avg: 38665 Min: 38000 Max: 39212 Err:     0 (0.00%) Active: 0 Started: 100 Finished: 100
summary =  12699 in 00:30:39 =    6.9/s Avg: 12068 Min:    11 Max: 41650 Err:   721 (5.68%)
Tidying up ...    @ Mon Nov 05 15:38:52 CST 2018 (1541403532957)



GUI模式启动Jmeter (我配置了activemq)

 

Writing log file to: C:\windows\system32\jmeter.log
================================================================================
Don't use GUI mode for load testing, only for Test creation and Test debugging !
For load testing, use NON GUI Mode & adapt Java Heap to your test requirements
================================================================================
SLF4J: Class path contains multiple SLF4J bindings.
SLF4J: Found binding in [jar:file:/D:/apache-jmeter-3.1/lib/activemq-all-5.15.6.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: Found binding in [jar:file:/D:/apache-jmeter-3.1/lib/ApacheJMeter_slf4j_logkit.jar!/org/slf4j/impl/StaticLoggerBinder.class]
SLF4J: See http://www.slf4j.org/codes.html#multiple_bindings for an explanation.
SLF4J: Actual binding is of type [org.slf4j.impl.Log4jLoggerFactory]

 

<think>我们正在解决用户的问题:JMeterGUI模式下执行到一半卡住。根据用户提供的引用资料,我们可以提取以下关键信息:1.引用[1]提到线程数较大时JMeter容易卡死,并给出了一个解决方案(但未具体说明)。2.引用[2]和[3]是关于JMeter分布式部署的,可能涉及负载机配置问题。3.引用[4]提到在GUI模式运行并生成报告时出现异常,解决方案是将输出格式从xml改为csv。4.引用[5]展示了命令行运行JMeter的示例。用户的问题是GUI模式执行到一半卡住,可能的原因包括:-内存不足-线程数设置过高-测试计划本身有问题(如某些元件导致)-输出文件格式问题(如生成报告时)-分布式测试中负载机连接问题根据引用资料,我们可以总结以下解决方案:1.调整内存设置:修改JMeter的启动脚本(jmeter.bat或jmeter),增加堆内存(-Xms和-Xmx参数)。2.降低线程数:如果线程数过大,尝试分多次测试或使用分布式测试。3.检查测试计划:确保测试计划中不存在可能导致阻塞的元件(如某些监听器或不当的配置)。4.修改输出格式:如引用[4]所述,将输出格式改为csv可能避免某些问题。5.使用命令行参数:确保命令行参数正确,如引用[5]所示。具体步骤:**1.调整JMeter内存设置**-打开JMeter安装目录下的`bin`文件夹。-编辑`jmeter.bat`(Windows)或`jmeter`(Linux/Mac)文件。-找到设置堆内存的参数(如`HEAP`),默认可能是`-Xms1g-Xmx1g`,可以适当增加,例如:```setHEAP=-Xms2g-Xmx2g```注意:不要超过物理内存的可用量。**2.检查线程数和分布式测试**-如果线程数很大(如几千),考虑使用分布式测试(多台负载机)。具体步骤可参考引用[2]和[3]。-在分布式测试中,确保主控机和负载机之间的网络畅通,且负载机已正确启动`jmeter-server`。**3.修改输出文件格式**-如引用[4]所述,修改`jmeter.properties`文件(位于`bin`目录):```jmeter.save.saveservice.output_format=csv```**4.检查测试计划**-移除不必要的监听器,因为监听器会消耗大量内存。-确保测试脚本没有死循环或长时间等待的情况。**5.命令行运行的正确方式**-使用GUI模式运行,例如:```jmeter-n-ttest.jmx-lresult.jtl```如果需要生成报告,可以之后运行:```jmeter-gresult.jtl-oreport```如果以上步骤仍不能解决问题,可以尝试:-升级JMeter到最新版本。-检查系统资源(CPU、内存)使用情况,确认是否有其他进程占用资源。-分步运行测试计划,定位导致卡住的元件。根据引用资料,我们特别强调修改输出格式为csv(引用[4])和调整内存设置(引用[1])可能是直接有效的解决方案。最后,生成相关问题:1.如何调整JMeter的内存设置以避免内存溢出?2.JMeter分布式测试的配置步骤是什么?3.如何优化JMeter测试计划以提高执行效率?</think>### JMeterGUI模式下执行卡住问题解决方案 JMeterGUI模式执行到一半卡住通常由内存不足、配置不当或测试计划问题引起。以下是系统化解决方案: #### 1. **调整内存配置(首要措施)** - 修改`jmeter.bat`/`jmeter.sh`中的堆内存设置: ```shell # Windows: 编辑 jmeter.bat set HEAP=-Xms2g -Xmx4g # 根据机器内存调整(建议不超过物理内存80%) set NEW=-XX:NewSize=512m -XX:MaxNewSize=512m ``` - **关键参数**: - `-Xmx`:最大堆内存(至少设为测试数据量的2倍) - `-XX:MaxMetaspaceSize=256m`:避免元空间溢出 - 保存后通过命令行验证: ```shell jmeter -v # 检查内存参数是否生效 ``` #### 2. **优化测试计划配置** - **禁用冗余监听器**: - 移除`View Results Tree`等GUI组件,GUI模式下会消耗内存 - 使用简单数据写入器替代: ```xml <ResultCollector guiclass="SimpleDataWriter" testclass="ResultCollector"/> ``` - **修改结果文件格式**(引用[4]): 编辑`bin/jmeter.properties`: ```properties jmeter.save.saveservice.output_format=csv # 替换默认XML格式 ``` #### 3. **命令行执行优化** - 基础命令结构(引用[5]): ```shell jmeter -n -t test.jmx -l result.jtl -e -o report/ ``` - **关键改进**: - 添加内存监控:`-Jjmeter.reportgenerator.overall_gc_metrics=true` - 分阶段执行大型测试: ```shell # 第一阶段:执行测试 jmeter -n -t test.jmx -l phase1.jtl # 第二阶段:生成报告 jmeter -g phase1.jtl -o report/ ``` #### 4. **分布式测试方案**(引用[2][3]) 当单机性能不足时: ```shell # 控制机执行(需配置远程主机IP) jmeter -n -t test.jmx -R 192.168.1.101,192.168.1.102 -l distributed.jtl ``` - **负载机要求**: - 所有机器安装相同JMeter版本 - 启动`jmeter-server`服务 - 关闭防火墙或开放端口(默认1099) #### 5. **其他关键措施** - **升级JDK**:使用JDK 11+(对内存管理更高效) - **结果文件轮换**: ```properties jmeter.save.saveservice.autoflush=true jmeter.save.saveservice.maxfiles=10 # 限制结果文件数量 ``` - **监控工具**: - 运行中实时监控:`jconsole <JMeter进程ID>` - 内存溢出时生成堆转储:`-XX:+HeapDumpOnOutOfMemoryError` > **效果验证**:调整后可通过`jvisualvm`监控内存波动,正常情况应呈锯齿状(GC回收效果)。若测试吞吐量提升30%以上或不再卡顿即解决成功[^1][^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值