前言
FPN网络主要应用于多层特征提取,使用多尺度的特征层来进行目标检测,可以利用不同的特征层对于不同大小特征的敏感度不同,将他们充分利用起来,以更有利于目标检测,在maskrcnn benchmark中代码详解如下:
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved.
import torch
import torch.nn.functional as F
from torch import nn
class FPN(nn.Module):
"""
Module that adds FPN on top of a list of feature maps.
The feature maps are currently supposed to be in increasing depth
order, and must be consecutive
"""
def __init__(
self, in_channels_list, out_channels, conv_block, top_blocks=None
):
"""
Arguments:
in_channels_list (list[int]): number of channels for each feature map that
will be fed 每一个特征图上输入数据的通道数
out_channels (int): number of channels of the FPN representation FPN结构输出特征的通道数
top_blocks (nn.Module or None): if provided, an extra operation will
be performed on the output of the

本文深入解析了MaskRCNN Benchmark中FPN(Feature Pyramid Network)的实现,探讨了FPN如何利用多尺度特征层提升目标检测的效果,特别是在深度学习目标检测任务中的应用。
最低0.47元/天 解锁文章
2362

被折叠的 条评论
为什么被折叠?



