hdoj 4004 The Frog's Games

本文介绍了一款名为铁蛙三项的游戏中的跳跃挑战环节。青蛙运动员需要跳过一定宽度的河流,河中分布着若干块石头作为落脚点。文章通过二分查找算法,确定了青蛙完成此挑战所需的最小跳跃能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

D - The Frog's Games
Time Limit:1000MS     Memory Limit:65768KB     64bit IO Format:%I64d & %I64u
Submit
 
Status
Description
The annual Games in frogs' kingdom started again. The most famous game is the Ironfrog Triathlon. One test in the Ironfrog Triathlon is jumping. This project requires the frog athletes to jump over the river. The width of the river is L (1<= L <= 1000000000). There are n (0<= n <= 500000) stones lined up in a straight line from one side to the other side of the river. The frogs can only jump through the river, but they can land on the stones. If they fall into the river, they 
are out. The frogs was asked to jump at most m (1<= m <= n+1) times. Now the frogs want to know if they want to jump across the river, at least what ability should they have. (That is the frog's longest jump distance).
 
Input
The input contains several cases. The first line of each case contains three positive integer L, n, and m. 
Then n lines follow. Each stands for the distance from the starting banks to the nth stone, two stone appear in one place is impossible.
 
Output
For each case, output a integer standing for the frog's ability at least they should have.
 
Sample Input
6 1 2
2
25 3 3
11 
2
18 
 
Sample Output
4
11 



二分。。。。


代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define LL long long
LL l,n,m,le,ri,mid,ans;
int shu[600000];
LL ll[600000];
int zhao(LL xx)
{
	int kp=1;
	LL sum=0;
	for (int i=0;i<=n;i++)
	{
		if (sum+ll[i]>xx)
		{
			kp++;
			sum=ll[i];
		}
		else
		sum+=ll[i];
	}
	if (kp<=m)
	return true;
	else
	return false;
}
int main()
{
	while (~scanf("%lld%lld%lld",&l,&n,&m))
	{
		memset(shu,0,sizeof(shu));
		for (int i=1;i<=n;i++)
		scanf("%d",&shu[i]);
		sort(shu+1,shu+1+n);
		shu[0]=0;
		ri=0;le=0;
		for (int i=0;i<n;i++)
		{
			ll[i]=shu[i+1]-shu[i];
			le=max(le,ll[i]);
			ri+=ll[i];
		}
		ll[n]=l-shu[n];
		le=max(le,ll[n]);
		ri+=ll[n]; 
		while (ri>=le)
		{
			mid=(ri+le)/2;
			if (zhao(mid))
			{
				ans=mid;
				ri=mid-1;
			}
			else
			le=mid+1;
		}
		printf("%lld\n",ans);
	}
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值