Alias Method解决随机类型概率问题

     举个例子,游戏中玩家推倒了一个boss,会按如下概率掉落物品:10%掉武器 20%掉饰品 30%掉戒指 40%掉披风。现在要给出下一个掉落的物品类型,或者说一个掉落的随机序列,要求符合上述概率。

一般人会想到的两种解法

     第一种算法,构造一个容量为100(或其他)的数组,将其中10个元素填充为类型1(武器),20个元素填充为类型2(饰品)...构造完毕之后,在1到100之间取随机数rand,取到的array[rand]对应的值,即为随机到的类型。这种方法优点是实现简单,构造完成之后生成随机类型的时间复杂度就是O(1),缺点是精度不够高,占用空间大,尤其是在类型很多的时候。

     第二种就是一般的离散算法,通过概率分布构造几个点,[10, 30, 60, 100],没错,后面的值就是前面依次累加的概率之和(是不是像斐波那契数列)。在生成1~100的随机数,看它落在哪个区间,比如50在[30,60]之间,就是类型3。在查找时,可以采用线性查找,或效率更高的二分查找,时间复杂度O(logN)。

这里推荐一个大牛的两篇文章,从数学入手,探讨各种算法实现。《用JavaScript玩转游戏编程(一)掉宝类型概率》 和《实验比较各离散采样算法》 。想深入了解的朋友推荐看看。

参考他的文章中得到两个概念,PDF(密度分布函数)和 CDF(累积分布函数)两种概率分布,分别对应如上两种算法:

 

T1234
PDF0.10.20.30.4
CDF0.10.30.61.0

 

 

下面是第二种算法使用二分查找的实现(本文都是用PHP实现):


<?phpclass DiscreteSample{	private $cdf;	private $cnt;	public function init($pdf)	{		$this->cnt = count($pdf);		if($this->cnt == 0)			die("pdf size is empty");		if(abs(array_sum($pdf) - 1) > 0.00001)			die("pdf sum not equal 1, sum:".array_sum($pdf));		$this->_pdf2cdf($pdf);	}	private function _pdf2cdf($pdf)	{		$this->cdf = $pdf;		for ($i=1; $i < $this->cnt; $i++)		{ 			$this->cdf[$i] += $this->cdf[$i - 1];		}		//因为浮点型精度问题,最后一个值强制为1		$this->cdf[$this->cnt - 1] = 1;	}	public function next_rand()	{		$left = 0;		$right = $this->cnt;		$random = mt_rand() / mt_getrandmax();		while ($left < $right - 1) 		{			$mid = intval(($left + $right)/2);			if($mid - 1 >= $this->cnt) break;			if($random > $this->cdf[$mid - 1])				$left = $mid;			else				$right = $mid;		}		return $left;	}}?>


好了,现在就来说一下Alias Method(别名方法)

 

在这里我们不深究他的数学原理(http://www.keithschwarz.com/darts-dice-coins/ 这篇文章里详述了其原理),来看看如何使用和实现。譬如说如上的PDF[0.1,0.2,0.3,0.4],将每种概率当做一列,别名算法最终的结果是要构造拼装出一个每一列合都为1的矩形,若每一列最后都要为1,那么要将所有元素都乘以4(概率类型的数量)


此时会有概率大于1的和小于1的,接下来就是构造出某种算法用大于1的补足小于1的,使每种概率最后都为1,注意,这里要遵循一个限制:每列至多是两种概率的组合。


最终,我们得到了两个数组,一个是在下面原始的prob数组[0.4,0.8,0.6,1],另外就是在上面补充的Alias数组,其值代表填充的那一列的序号索引,(如果这一列上不需填充,那么就是NULL),[3,4,4,NULL]。当然,最终的结果可能不止一种,你也可能得到其他结果。

等等,这个问题还没有解决,得到这两个数组之后,随机取其中的一列,比如是第三列,让prob[3]的值与一个随机小数f比较,如果f小于prob[3],那么结果就是3,否则就是Alias[3],即4。

我们可以来简单验证一下,比如随机到第三列的概率是1/4,得到第三列下半部分的概率为1/4*3/5,记得在第一列还有它的一部分,那里的概率为1/4*(1-2/5),两者相加最终的结果还是3/10,符合原来的pdf概率。这种算法初始化较复杂,但生成随机结果的时间复杂度为O(1),是一种性能非常好的算法。

 

T1234
PDF0.10.20.30.4
Alias344NULL

原文地址:http://www.java123.net/494772.html

谢谢!


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值