论文笔记:Inception-V4, Inception-ResNet

本文探讨了结合残差连接的Inception架构(Inception-ResNet)在深度学习中的应用,介绍了如何将残差连接引入到Inception模块中以解决深层网络训练问题,并讨论了批量归一化在该架构中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1. Motivation: residual connections work well for deep network ==> can be combined with Inception (Inception-ResNet) 
 
2. architecture
a. replace filter concatenation of inception with residual connection 

(the 1 x 1 conv after inception layer aims to scale up the dimension before adding to the input)
b. scaling down the residuals (multiple scaling factor 0.1~0.3) before addition ==> stabilize the training (prevent weights from going to 0)

2. Batch normalization: on top of traditional layers (excluding summation layer to reduce computational cost), prevent saturating. 

3. performance.(for detailed differences bw models, please refer to the paper) 




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值